1
IIT-JEE 1992
Subjective
+6
-0
Let $$p \ge 3$$ be an integer and $$\alpha$$, $$\beta$$ be the roots of $${x^2} - \left( {p + 1} \right)x + 1 = 0$$ using mathematical induction show that $${\alpha ^n} + {\beta ^n}.$$
(i) is an integer and (ii) is not divisible by $$p$$
2
IIT-JEE 1991
Subjective
+4
-0
Using induction or otherwise, prove that for any non-negative integers $$m$$, $$n$$, $$r$$ and $$k$$ ,
$$\sum\limits_{m = 0}^k {\left( {n - m} \right)} {{\left( {r + m} \right)!} \over {m!}} = {{\left( {r + k + 1} \right)!} \over {k!}}\left[ {{n \over {r + 1}} - {k \over {r + 2}}} \right]$$
3
IIT-JEE 1990
Subjective
+2
-0
Prove that $${{{n^7}} \over 7} + {{{n^5}} \over 5} + {{2{n^3}} \over 3} - {n \over {105}}$$ is an integer for every positive integer $$n$$
4
IIT-JEE 1989
Subjective
+3
-0
Using mathematical induction, prove that $${}^m{C_0}{}^n{C_k} + {}^m{C_1}{}^n{C_{k - 1}}\,\,\, + .....{}^m{C_k}{}^n{C_0} = {}^{\left( {m + n} \right)}{C_k},$$
where $$m,\,n,\,k$$ are positive integers, and $${}^p{C_q} = 0$$ for $$p < q.$$
Physics
Mechanics
Electricity
Optics
Modern Physics
Chemistry
Physical Chemistry
Inorganic Chemistry
Organic Chemistry
Mathematics
Algebra
Trigonometry
Coordinate Geometry
Calculus
EXAM MAP
Joint Entrance Examination