Numerical

1
Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function such that $f(x+y)=f(x)+f(y)$ for all $x, y \in \mathbb{R}$, and $g: \mathbb{R} \rightarrow(0, \infty)$ be a function such that $g(x+y)=g(x) g(y)$ for all $x, y \in \mathbb{R}$. If $f\left(\frac{-3}{5}\right)=12$ and $g\left(\frac{-1}{3}\right)=2$, then the value of $\left(f\left(\frac{1}{4}\right)+g(-2)-8\right) g(0)$ is _________.
JEE Advanced 2024 Paper 2 Online
2

Let the function $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by

$$ f(x)=\frac{\sin x}{e^{\pi x}} \frac{\left(x^{2023}+2024 x+2025\right)}{\left(x^2-x+3\right)}+\frac{2}{e^{\pi x}} \frac{\left(x^{2023}+2024 x+2025\right)}{\left(x^2-x+3\right)} . $$

Then the number of solutions of $f(x)=0$ in $\mathbb{R}$ is _________.

JEE Advanced 2024 Paper 2 Online
3
Let the function f : [0, 1] $$ \to $$ R be defined by

$$f(x) = {{{4^x}} \over {{4^x} + 2}}$$

Then the value of $$f\left( {{1 \over {40}}} \right) + f\left( {{2 \over {40}}} \right) + f\left( {{3 \over {40}}} \right) + ... + f\left( {{{39} \over {40}}} \right) - f\left( {{1 \over 2}} \right)$$ is ..........
JEE Advanced 2020 Paper 2 Offline
4
Let the function $$f:(0,\pi ) \to R$$ be defined by $$f(\theta ) = {(\sin \theta + \cos \theta )^2} + {(\sin \theta - \cos \theta )^4}$$

Suppose the function f has a local minimum at $$\theta $$ precisely when $$\theta \in \{ {\lambda _1}\pi ,....,{\lambda _r}\pi \} $$, where $$0 < {\lambda _1} < ...{\lambda _r} < 1$$. Then the value of $${\lambda _1} + ... + {\lambda _r}$$ is .............
JEE Advanced 2020 Paper 2 Offline
5
Let f : [0, 2] $$ \to $$ R be the function defined by

$$f(x) = (3 - \sin (2\pi x))\sin \left( {\pi x - {\pi \over 4}} \right) - \sin \left( {3\pi x + {\pi \over 4}} \right)$$

If $$\alpha ,\,\beta \in [0,2]$$ are such that $$\{ x \in [0,2]:f(x) \ge 0\} = [\alpha ,\beta ]$$, then the value of $$\beta - \alpha $$ is ..........
JEE Advanced 2020 Paper 1 Offline
6
For a polynomial g(x) with real coefficients, let mg denote the number of distinct real roots of g(x). Suppose S is the set of polynomials with real coefficients defined by

$$S = \{ {({x^2} - 1)^2}({a_0} + {a_1}x + {a_2}{x^2} + {a_3}{x^3}):{a_0},{a_1},{a_2},{a_3} \in R\} $$;

For a polynomial f, let f' and f'' denote its first and second order derivatives, respectively. Then the minimum possible value of (mf' + mf''), where f $$ \in $$ S, is ..............
JEE Advanced 2020 Paper 1 Offline
7
Let X be a set with exactly 5 elements and Y be a set with exactly 7 elements. If $$\alpha $$ is the number of one-one functions from X to Y and $$\beta $$ is the number of onto functions from Y to X, then the value of $${1 \over {5!}}(\beta - \alpha )$$ is ..................
JEE Advanced 2018 Paper 2 Offline
8

If the function $$f(x) = {x^3} + {e^{x/2}}$$ and $$g(x) = {f^{ - 1}}(x)$$, then the value of $$g'(1)$$ is _________.

IIT-JEE 2009 Paper 2 Offline

MCQ (More than One Correct Answer)

1
Let $S=(0,1) \cup(1,2) \cup(3,4)$ and $T=\{0,1,2,3\}$. Then which of the following statements is(are) true?
JEE Advanced 2023 Paper 1 Online
2
Let $f:[0,1] \rightarrow[0,1]$ be the function defined by $f(x)=\frac{x^3}{3}-x^2+\frac{5}{9} x+\frac{17}{36}$. Consider the square region $S=[0,1] \times[0,1]$. Let $G=\{(x, y) \in S: y>f(x)\}$ be called the green region and $R=\{(x, y) \in S: y < f(x)\}$ be called the red region. Let $L_h=\{(x, h) \in S: x \in[0,1]\}$ be the horizontal line drawn at a height $h \in[0,1]$. Then which of the following statements is(are) true?
JEE Advanced 2023 Paper 1 Online
3

Let $$|M|$$ denote the determinant of a square matrix $$M$$. Let $$g:\left[0, \frac{\pi}{2}\right] \rightarrow \mathbb{R}$$ be the function defined by

$$ g(\theta)=\sqrt{f(\theta)-1}+\sqrt{f\left(\frac{\pi}{2}-\theta\right)-1} $$

where

$$ f(\theta)=\frac{1}{2}\left|\begin{array}{ccc} 1 & \sin \theta & 1 \\ -\sin \theta & 1 & \sin \theta \\ -1 & -\sin \theta & 1 \end{array}\right|+\left|\begin{array}{ccc} \sin \pi & \cos \left(\theta+\frac{\pi}{4}\right) & \tan \left(\theta-\frac{\pi}{4}\right) \\ \sin \left(\theta-\frac{\pi}{4}\right) & -\cos \frac{\pi}{2} & \log _{e}\left(\frac{4}{\pi}\right) \\ \cot \left(\theta+\frac{\pi}{4}\right) & \log _{e}\left(\frac{\pi}{4}\right) & \tan \pi \end{array}\right| . $$

Let $$p(x)$$ be a quadratic polynomial whose roots are the maximum and minimum values of the function $$g(\theta)$$, and $$p(2)=2-\sqrt{2}$$. Then, which of the following is/are TRUE ?

JEE Advanced 2022 Paper 1 Online
4

Let $$f(x) = \sin \left( {{\pi \over 6}\sin \left( {{\pi \over 2}\sin x} \right)} \right)$$ for all $$x \in R$$ and g(x) = $${{\pi \over 2}\sin x}$$ for all x$$\in$$R. Let $$(f \circ g)(x)$$ denote f(g(x)) and $$(g \circ f)(x)$$ denote g(f(x)). Then which of the following is/are true?

JEE Advanced 2015 Paper 1 Offline
5
For every pair of continuous function f, g : [0, 1] $$\to$$ R such that max {f(x) : x $$\in$$ [0, 1]} = max {g(x) : x $$\in$$ [0, 1]}. The correct statement(s) is (are)
JEE Advanced 2014 Paper 1 Offline
6
Let $$f:\left( { - {\pi \over 2},{\pi \over 2}} \right) \to R$$ be given by $$f(x) = {[\log (\sec x + \tan x)]^3}$$. Then,
JEE Advanced 2014 Paper 1 Offline
7

Let $$f:( - 1,1) \to R$$ be such that $$f(\cos 4\theta ) = {2 \over {2 - {{\sec }^2}\theta }}$$ for $$\theta \in \left( {0,{\pi \over 4}} \right) \cup \left( {{\pi \over 4},{\pi \over 2}} \right)$$. Then the value(s) of $$f\left( {{1 \over 3}} \right)$$ is(are)

IIT-JEE 2012 Paper 2 Offline
8

Let $$f:(0,1) \to R$$ be defined by $$f(x) = {{b - x} \over {1 - bx}}$$, where b is a constant such that $$0 < b < 1$$. Then

IIT-JEE 2011 Paper 2 Offline

MCQ (Single Correct Answer)

1
If the function f : R $$ \to $$ R is defined by f(x) = |x| (x $$-$$ sin x), then which of the following statements is TRUE?
JEE Advanced 2020 Paper 1 Offline
2
Let $${E_1} = \left\{ {x \in R:x \ne 1\,and\,{x \over {x - 1}} > 0} \right\}$$ and


$${E_2} = \left\{ \matrix{ x \in {E_1}:{\sin ^{ - 1}}\left( {{{\log }_e}\left( {{x \over {x - 1}}} \right)} \right) \hfill \cr is\,a\,real\,number \hfill \cr} \right\}$$

(Here, the inverse trigonometric function $${\sin ^{ - 1}}$$ x assumes values in $$\left[ { - {\pi \over 2},{\pi \over 2}} \right]$$.).

Let f : E1 $$ \to $$ R be the function defined by f(x) = $${{{\log }_e}\left( {{x \over {x - 1}}} \right)}$$ and g : E2 $$ \to $$ R be the function defined by g(x) = $${\sin ^{ - 1}}\left( {{{\log }_e}\left( {{x \over {x - 1}}} \right)} \right)$$.
LIST-I LIST-II
P. The range of $f$ is 1. $\left( -\infty, \frac{1}{1-e} \right] \cup \left[ \frac{e}{e-1}, \infty \right)$
Q. The range of $g$ contains 2. $(0, 1)$
R. The domain of $f$ contains 3. $\left[ -\frac{1}{2}, \frac{1}{2} \right]$
S. The domain of $g$ is 4. $(-\infty, 0) \cup (0, \infty)$
5. $\left( -\infty, \frac{e}{e-1} \right)$
6. $(-\infty, 0) \cup \left( \frac{1}{2}, \frac{e}{e-1} \right]$
The correct option is :
JEE Advanced 2018 Paper 2 Offline
3
Let S = {1, 2, 3, .........., 9}. For k = 1, 2, .........., 5, let Nk be the number of subsets of S, each containing five elements out of which exactly k are odd. Then N1 + N2 + N3 + N4 + N5 =
JEE Advanced 2017 Paper 2 Offline
4
Let f1 : R $$ \to $$ R, f2 : [0, $$\infty $$) $$ \to $$ R, f3 : R $$ \to $$ R, and f4 : R $$ \to $$ [0, $$\infty $$) be defined by

$${f_1}\left( x \right) = \left\{ {\matrix{ {\left| x \right|} & {if\,x < 0,} \cr {{e^x}} & {if\,x \ge 0;} \cr } } \right.$$

f2(x) = x2 ;

$${f_3}\left( x \right) = \left\{ {\matrix{ {\sin x} & {if\,x < 0,} \cr x & {if\,x \ge 0;} \cr } } \right.$$

and

$${f_4}\left( x \right) = \left\{ {\matrix{ {{f_2}\left( {{f_1}\left( x \right)} \right)} & {if\,x < 0,} \cr {{f_2}\left( {{f_1}\left( x \right)} \right) - 1} & {if\,x \ge 0;} \cr } } \right.$$

JEE Advanced 2014 Paper 2 Offline Mathematics - Functions Question 12 English
JEE Advanced 2014 Paper 2 Offline
5

The function $$f:[0,3] \to [1,29]$$, defined by $$f(x) = 2{x^3} - 15{x^2} + 36x + 1$$, is

IIT-JEE 2012 Paper 1 Offline
6

Let f(x) = x2 and g(x) = sin x for all x $$\in$$ R. Then the set of all x satisfying $$(f \circ g \circ g \circ f)(x) = (g \circ g \circ f)(x)$$, where $$(f \circ g)(x) = f(g(x))$$, is

IIT-JEE 2011 Paper 2 Offline
7

Match the statements given in Column I with the intervals/union of intervals given in Column II :

IIT-JEE 2011 Paper 2 Offline Mathematics - Functions Question 7 English

IIT-JEE 2011 Paper 2 Offline
8

Let $f, g$ and $h$ be real valued functions defined on the interval $[0,1]$ by

$f(x)=e^{x^2}+e^{-x^2}$,

$g(x)=x e^{x^2}+e^{-x^2}$

and $h(x)=x^2 e^{x^2}+e^{-x^2}$.

If $a, b$ and $c$ denote, respectively, the absolute maximum of $f, g$ and $h$ on $[0,1]$, then :

IIT-JEE 2010 Paper 1 Offline
9
Let $S=\{1,2,3,4\}$. The total number of unordered pairs of disjoint subsets of $S$ is equal to :
IIT-JEE 2010 Paper 2 Offline
10

Consider the polynomial
$$f\left( x \right) = 1 + 2x + 3{x^2} + 4{x^3}.$$
Let $$s$$ be the sum of all distinct real roots of $$f(x)$$ and let $$t = \left| s \right|.$$

The real numbers lies in the interval

IIT-JEE 2010 Paper 2 Offline
11

Consider the polynomial
$$f\left( x \right) = 1 + 2x + 3{x^2} + 4{x^3}.$$
Let $$s$$ be the sum of all distinct real roots of $$f(x)$$ and let $$t = \left| s \right|.$$

The function$$f'(x)$$ is

IIT-JEE 2010 Paper 2 Offline
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12