1

IIT-JEE 1998

Subjective
Let $$p$$ be a prime and $$m$$ a positive integer. By mathematical induction on $$m$$, or otherwise, prove that whenever $$r$$ is an integer such that $$p$$ does not divide $$r$$, $$p$$ divides $${}^{np}{C_r},$$

[Hint: You may use the fact that $${\left( {1 + x} \right)^{\left( {m + 1} \right)p}} = {\left( {1 + x} \right)^p}{\left( {1 + x} \right)^{mp}}$$]

Answer

Solve it.
2

IIT-JEE 1997

Subjective
Let $$0 < {A_i} < n$$ for $$i = 1,\,2....,\,n.$$ Use mathematical induction to prove that $$$\sin {A_1} + \sin {A_2}....... + \sin {A_n} \le n\,\sin \,\,\left( {{{{A_1} + {A_2} + ...... + {A_n}} \over n}} \right)$$$

where $$ \ge 1$$ is a natural number. {You may use the fact that $$p\sin x + \left( {1 - p} \right)\sin y \le \sin \left[ {px + \left( {1 - p} \right)y} \right],$$ where $$0 \le p \le 1$$ and $$0 \le x,y \le \pi .$$}

Answer

Solve it.
3

IIT-JEE 1996

Subjective
Using mathematical induction prove that for every integer $$n \ge 1,\,\,\left( {{3^{2n}} - 1} \right)$$ is divisible by $${2^{n + 2}}$$ but not by $${2^{n + 3}}$$.

Answer

Solve it.
4

IIT-JEE 1994

Subjective
Let $$n$$ be a positive integer and $${\left( {1 + x + {x^2}} \right)^n} = {a_0} + {a_1}x + ............ + {a_{2n}}{x^{2n}}$$
Show that $$a_0^2 - a_1^2 + a_2^2...... + {a_{2n}}{}^2 = {a_n}$$

Answer

Solve it.

Joint Entrance Examination

JEE Main JEE Advanced WB JEE

Graduate Aptitude Test in Engineering

GATE CSE GATE ECE GATE EE GATE ME GATE CE GATE PI GATE IN

Medical

NEET

CBSE

Class 12