Numerical

1

Let $\vec{p}=2 \hat{i}+\hat{j}+3 \hat{k}$ and $\vec{q}=\hat{i}-\hat{j}+\hat{k}$. If for some real numbers $\alpha, \beta$, and $\gamma$, we have

$$ 15 \hat{i}+10 \hat{j}+6 \hat{k}=\alpha(2 \vec{p}+\vec{q})+\beta(\vec{p}-2 \vec{q})+\gamma(\vec{p} \times \vec{q}), $$

then the value of $\gamma$ is ________.

JEE Advanced 2024 Paper 2 Online
2

Let $\overrightarrow{O P}=\frac{\alpha-1}{\alpha} \hat{i}+\hat{j}+\hat{k}, \overrightarrow{O Q}=\hat{i}+\frac{\beta-1}{\beta} \hat{j}+\hat{k}$ and $\overrightarrow{O R}=\hat{i}+\hat{j}+\frac{1}{2} \hat{k}$ be three vectors, where $\alpha, \beta \in \mathbb{R}-\{0\}$ and $O$ denotes the origin. If $(\overrightarrow{O P} \times \overrightarrow{O Q}) \cdot \overrightarrow{O R}=0$ and the point $(\alpha, \beta, 2)$ lies on the plane $3 x+3 y-z+l=0$, then the value of $l$ is ____________.

JEE Advanced 2024 Paper 1 Online
3
Let $P$ be the plane $\sqrt{3} x+2 y+3 z=16$ and let $S=\left\{\alpha \hat{i}+\beta \hat{j}+\gamma \hat{k}: \alpha^2+\beta^2+\gamma^2=1\right.$ and the distance of $(\alpha, \beta, \gamma)$ from the plane $P$ is $\left.\frac{7}{2}\right\}$. Let $\vec{u}, \vec{v}$ and $\vec{w}$ be three distinct vectors in $S$ such that $|\vec{u}-\vec{v}|=|\vec{v}-\vec{w}|=|\vec{w}-\vec{u}|$. Let $V$ be the volume of the parallelepiped determined by vectors $\vec{u}, \vec{v}$ and $\vec{w}$. Then the value of $\frac{80}{\sqrt{3}} V$ is :
JEE Advanced 2023 Paper 1 Online
4
Let $$\overrightarrow u $$, $$\overrightarrow v $$ and $$\overrightarrow w $$ be vectors in three-dimensional space, where $$\overrightarrow u $$ and $$\overrightarrow v $$ are unit vectors which are not perpendicular to each other and $$\overrightarrow u $$ . $$\overrightarrow w $$ = 1, $$\overrightarrow v $$ . $$\overrightarrow w $$ = 1, $$\overrightarrow w $$ . $$\overrightarrow w $$ = 4

If the volume of the paralleopiped, whose adjacent sides are represented by the vectors, $$\overrightarrow u $$, $$\overrightarrow v $$ and $$\overrightarrow w $$, is $$\sqrt 2 $$, then the value of $$\left| {3\overrightarrow u + 5\overrightarrow v } \right|$$ is ___________.
JEE Advanced 2021 Paper 1 Online
5
Let $$\overrightarrow a = 2\widehat i + \widehat j - \widehat k$$ and $$\overrightarrow b = \widehat i + 2\widehat j + \widehat k$$ be two vectors. Consider a vector c = $$\alpha $$$$\overrightarrow a$$ + $$\beta $$$$\overrightarrow b$$, $$\alpha $$, $$\beta $$ $$ \in $$ R. If the projection of $$\overrightarrow c$$ on the vector ($$\overrightarrow a$$ + $$\overrightarrow b$$) is $$3\sqrt 2 $$, then the
minimum value of ($$\overrightarrow c$$ $$-$$($$\overrightarrow a$$ $$ \times $$ $$\overrightarrow b$$)).$$\overrightarrow c$$ equals ................
JEE Advanced 2019 Paper 2 Offline
6
Let a and b be two unit vectors such that a . b = 0. For some x, y$$ \in $$R, let $$\overrightarrow c = x\overrightarrow a + y\overrightarrow b + \overrightarrow a \times \overrightarrow b $$. If | $$\overrightarrow c $$| = 2 and the vector c is inclined at the same angle $$\alpha $$ to both a and b, then the value of $$8{\cos ^2}\alpha $$ is ..............
JEE Advanced 2018 Paper 1 Offline
7
Suppose that $$\overrightarrow p ,\overrightarrow q $$ and $$\overrightarrow r $$ are three non-coplanar vectors in $${R^3}$$. Let the components of a vector $$\overrightarrow s $$ along $$\overrightarrow p ,$$ $$\overrightarrow q $$ and $$\overrightarrow r $$ be $$4, 3$$ and $$5,$$ respectively. If the components of this vector $$\overrightarrow s $$ along $$\left( { - \overrightarrow p + \overrightarrow q + \overrightarrow r } \right),\left( {\overrightarrow p - \overrightarrow q + \overrightarrow r } \right)$$ and $$\left( { - \overrightarrow p - \overrightarrow q + \overrightarrow r } \right)$$ are $$x, y$$ and $$z,$$ respectively, then the value of $$2x+y+z$$ is
JEE Advanced 2015 Paper 2 Offline
8
Let $$\overrightarrow a \,\,,\,\,\overrightarrow b $$ and $$\overrightarrow c $$ be three non-coplanar unit vectors such that the angle between every pair of them is $${\pi \over 3}.$$ If $$\overrightarrow a \times \overrightarrow b + \overrightarrow b \times \overrightarrow c = p\overrightarrow a + q\overrightarrow b + r\overrightarrow c ,$$ where $$p,q$$ and $$r$$ are scalars, then the value of $${{{p^2} + 2{q^2} + {r^2}} \over {{q^2}}}$$ is
JEE Advanced 2014 Paper 1 Offline
9
If $$\overrightarrow a ,\overrightarrow b $$ and $$\overrightarrow c $$ are unit vectors satisfying
$${\left| {\overrightarrow a - \overrightarrow b } \right|^2} + {\left| {\overrightarrow b - \overrightarrow c } \right|^2} + {\left| {\overrightarrow c - \overrightarrow a } \right|^2} = 9,$$ then $$\left| {2\overrightarrow a + 5\overrightarrow b + 5\overrightarrow c } \right|$$ is
IIT-JEE 2012 Paper 1 Offline
10
Let $$\overrightarrow a = - \widehat i - \widehat k,\overrightarrow b = - \widehat i + \widehat j$$ and $$\overrightarrow c = \widehat i + 2\widehat j + 3\widehat k$$ be three given vectors. If $$\overrightarrow r $$ is a vector such that $$\overrightarrow r \times \overrightarrow b = \overrightarrow c \times \overrightarrow b $$ and $$\overrightarrow r .\overrightarrow a = 0,$$ then the value of $$\overrightarrow r .\overrightarrow b $$ is
IIT-JEE 2011 Paper 2 Offline
11
If $$\overrightarrow a $$ and $$\overrightarrow b $$ are vectors in space given by $$\overrightarrow a = {{\widehat i - 2\widehat j} \over {\sqrt 5 }}$$ and $$\overrightarrow b = {{2\widehat i + \widehat j + 3\widehat k} \over {\sqrt {14} }},$$ then find the value of $$\,\left( {2\overrightarrow a + \overrightarrow b } \right).\left[ {\left( {\overrightarrow a \times \overrightarrow b } \right) \times \left( {\overrightarrow a - 2\overrightarrow b } \right)} \right].$$
IIT-JEE 2010 Paper 1 Offline

MCQ (Single Correct Answer)

1
Let the position vectors of the points $P, Q, R$ and $S$ be $\vec{a}=\hat{i}+2 \hat{j}-5 \hat{k}, \vec{b}=3 \hat{i}+6 \hat{j}+3 \hat{k}$, $\vec{c}=\frac{17}{5} \hat{i}+\frac{16}{5} \hat{j}+7 \hat{k}$ and $\vec{d}=2 \hat{i}+\hat{j}+\hat{k}$, respectively. Then which of the following statements is true?
JEE Advanced 2023 Paper 2 Online
2
Let O be the origin and let PQR be an arbitrary triangle. The point S is such that

$$\overrightarrow{OP}$$ . $$\overrightarrow{OQ}$$ + $$\overrightarrow{OR}$$ . $$\overrightarrow{OS}$$ = $$\overrightarrow{OR}$$ . $$\overrightarrow{OP}$$ + $$\overrightarrow{OQ}$$ . $$\overrightarrow{OS}$$ = $$\overrightarrow{OQ}$$ . $$\overrightarrow{OR}$$ + $$\overrightarrow{OP}$$ . $$\overrightarrow{OS}$$

Then the triangle PQR has S as its
JEE Advanced 2017 Paper 2 Offline
3
|$$\overrightarrow{OX}$$ $$ \times $$ $$\overrightarrow{OY}$$| = ?
JEE Advanced 2017 Paper 2 Offline
4
Match the following :

$$\,\,\,\,$$ $$\,\,\,\,$$ $$\,\,\,\,$$ Column $$I$$
(A)$$\,\,\,\,$$ In $${R^2},$$ If the magnitude of the projection vector of the vector $$\alpha \widehat i + \beta \widehat j$$ on $$\sqrt 3 \widehat i + \widehat j$$ and If $$\alpha = 2 + \sqrt 3 \beta ,$$ then possible value of $$\left| \alpha \right|$$ is/are
(B)$$\,\,\,\,$$ Let $$a$$ and $$b$$ be real numbers such that the function $$f\left( x \right) = \left\{ {\matrix{ { - 3a{x^2} - 2,} & {x < 1} \cr {bx + {a^2},} & {x \ge 1} \cr } } \right.$$ if differentiable for all $$x \in R$$. Then possible value of $$a$$ is (are)
(C)$$\,\,\,\,$$ Let $$\omega \ne 1$$ be a complex cube root of unity. If $${\left( {3 - 3\omega + 2{\omega ^2}} \right)^{4n + 3}} + {\left( {2 + 3\omega - 3{\omega ^2}} \right)^{4n + 3}} + {\left( { - 3 + 2\omega + 3{\omega ^2}} \right)^{4n + 3}} = 0,$$ then possible value (s) of $$n$$ is (are)
(D)$$\,\,\,\,$$ Let the harmonic mean of two positive real numbers $$a$$ and $$b$$ be $$4.$$ If $$q$$ is a positive real nimber such that $$a, 5, q, b$$ is an arithmetic progression, then the value(s) of $$\left| {q - a} \right|$$ is (are)

$$\,\,\,\,$$ $$\,\,\,\,$$ $$\,\,\,\,$$ Column $$II$$
(p)$$\,\,\,\,$$ $$1$$
(q)$$\,\,\,\,$$ $$2$$
(r)$$\,\,\,\,$$ $$3$$
(s)$$\,\,\,\,$$ $$4$$
(t)$$\,\,\,\,$$ $$5$$

JEE Advanced 2015 Paper 1 Offline
5
match List $$I$$ with List $$II$$ and select the correct answer using the code given below the lists:

$$\,\,\,\,$$ $$\,\,\,\,$$ $$\,\,\,\,$$ List $$I$$
(P.)$$\,\,\,\,$$ Volume of parallelopiped determined by vectors $$\overrightarrow a ,\overrightarrow b $$ and $$\overrightarrow c $$ is $$2.$$ Then the volume of the parallelepiped determined by vectors $$2\left( {\overrightarrow a \times \overrightarrow b } \right),3\left( {\overrightarrow b \times \overrightarrow c } \right)$$ and $$\left( {\overrightarrow c \times \overrightarrow a } \right)$$ is
(Q.)$$\,\,\,\,$$ Volume of parallelopiped determined by vectors $$\overrightarrow a ,\overrightarrow b $$ and $$\overrightarrow c $$ is $$5.$$ Then the volume of the parallelepiped determined by vectors $$3\left( {\overrightarrow a + \overrightarrow b } \right),\left( {\overrightarrow b + \overrightarrow c } \right)$$ and $$2\left( {\overrightarrow c + \overrightarrow a } \right)$$ is
(R.)$$\,\,\,\,$$ Area of a triangle with adjacent sides determined by vectors $${\overrightarrow a }$$ and $${\overrightarrow b }$$ is $$20.$$ Then the area of the triangle with adjacent sides determined by vectors $$\left( {2\overrightarrow a + 3\overrightarrow b } \right)$$ and $$\left( {\overrightarrow a - \overrightarrow b } \right)$$ is
(S.)$$\,\,\,\,$$ Area of a parallelogram with adjacent sides determined by vectors $${\overrightarrow a }$$ and $${\overrightarrow b }$$ is $$30.$$ Then the area of the parallelogram with adjacent sides determined by vectors $$\left( {\overrightarrow a + \overrightarrow b } \right)$$ and $${\overrightarrow a }$$ is

$$\,\,\,\,$$ $$\,\,\,\,$$ $$\,\,\,\,$$ List $$II$$
(1.)$$\,\,\,\,$$ $$100$$
(2.)$$\,\,\,\,$$ $$30$$
(3.)$$\,\,\,\,$$ $$24$$
(4.)$$\,\,\,\,$$ $$60$$

JEE Advanced 2013 Paper 2 Offline
6
Let $\overrightarrow{\mathrm{PR}}=3 \hat{i}+\hat{j}-2 \hat{k}$ and $ \overrightarrow{\mathrm{SQ}}=\hat{i}-3 \hat{j}-4 \hat{k}$ determine diagonals of a parallelogram $P Q R S$ and $\overrightarrow{\mathrm{PT}}=\hat{i}+2 \hat{j}+3 \hat{k}$ be another vector. Then the volume of the parallelopiped determined by the vectors $\overrightarrow{\mathrm{PT}}, \overrightarrow{\mathrm{PQ}}$ and $\overrightarrow{\mathrm{PS}}$ is :
JEE Advanced 2013 Paper 1 Offline
7
If $$\overrightarrow a $$ and $$\overrightarrow b $$ are vectors such that $$\left| {\overrightarrow a + \overrightarrow b } \right| = \sqrt {29} $$ and $$\,\overrightarrow a \times \left( {2\widehat i + 3\widehat j + 4\widehat k} \right) = \left( {2\widehat i + 3\widehat j + 4\widehat k} \right) \times \widehat b,$$ then a possible value of $$\left( {\overrightarrow a + \overrightarrow b } \right).\left( { - 7\widehat i + 2\widehat j + 3\widehat k} \right)$$ is
IIT-JEE 2012 Paper 2 Offline
8
Let $$\overrightarrow a = \widehat i + \widehat j + \widehat k,\,\overrightarrow b = \widehat i - \widehat j + \widehat k$$ and $$\overrightarrow c = \widehat i - \widehat j - \widehat k$$ be three vectors. A vector $$\overrightarrow v $$ in the plane of $$\overrightarrow a $$ and $$\overrightarrow b ,$$ whose projection on $$\overrightarrow c $$ is $${{1 \over {\sqrt 3 }}}$$ , is given by
IIT-JEE 2011 Paper 1 Offline
9
Match the statements given in Column -$$I$$ with the values given in Column-$$II.$$

$$\,\,\,\,$$ $$\,\,\,\,$$ $$\,\,\,\,$$ Column-$$I$$
(A) $$\,\,\,\,$$If $$\overrightarrow a = \widehat j + \sqrt 3 \widehat k,\overrightarrow b = - \widehat j + \sqrt 3 \widehat k$$ and $$\overrightarrow c = 2\sqrt 3 \widehat k$$ form a triangle, then the internal angle of the triangle between $$\overrightarrow a $$ and $$\overrightarrow b $$ is
(B)$$\,\,\,\,$$ If $$\int\limits_a^b {\left( {f\left( x \right) - 3x} \right)dx = {a^2} - {b^2},} $$ then the value of $$f$$ $$\left( {{\pi \over 6}} \right)$$ is
(C)$$\,\,\,\,$$ The value of $${{{\pi ^2}} \over {\ell n3}}\int\limits_{7/6}^{5/6} {\sec \left( {\pi x} \right)dx} $$ is
(D)$$\,\,\,\,$$ The maximum value of $$\left| {Arg\left( {{1 \over {1 - z}}} \right)} \right|$$ for $$\left| z \right| = 1,\,z \ne 1$$ is given by

$$\,\,\,\,$$ $$\,\,\,\,$$ $$\,\,\,\,$$ Column-$$II$$
(p)$$\,\,\,\,$$ $${{\pi \over 6}}$$
(q)$$\,\,\,\,$$ $${{2\pi \over 3}}$$
(r)$$\,\,\,\,$$ $${{\pi \over 3}}$$
(s)$$\,\,\,\,$$ $$\pi $$
(t) $$\,\,\,\,$$ $${{\pi \over 2}}$$

IIT-JEE 2011 Paper 2 Offline
10
Let $$P,Q,R$$ and $$S$$ be the points on the plane with position vectors $${ - 2\widehat i - \widehat j,4\widehat i,3\widehat i + 3\widehat j}$$ and $${ - 3\widehat i + 2\widehat j}$$ respectively. The quadrilateral $$PQRS$$ must be a
IIT-JEE 2010 Paper 1 Offline
11
Two adjacent sides of a parallelogram $$ABCD$$ are given by
$$\overrightarrow {AB} = 2\widehat i + 10\widehat j + 11\widehat k$$ and $$\,\overrightarrow {AD} = -\widehat i + 2\widehat j + 2\widehat k$$
The side $$AD$$ is rotated by an acute angle $$\alpha $$ in the plane of the parallelogram so that $$AD$$ becomes $$AD'.$$ If $$AD'$$ makes a right angle with the side $$AB,$$ then the cosine of the angle $$\alpha $$ is given by
IIT-JEE 2010 Paper 2 Offline
12

If $$\overrightarrow a ,\overrightarrow b ,\overrightarrow c $$ and $$\overrightarrow d $$ are unit vectors such that $$(\overrightarrow a \times \overrightarrow b )\,.\,(\overrightarrow c \times \overrightarrow d ) = 1$$ and $$\overrightarrow a \,.\,\overrightarrow c = {1 \over 2}$$, then

IIT-JEE 2009 Paper 1 Offline
13

The unit vector perpendicular to both $${L_1}$$ and $${L_2}$$ is :

IIT-JEE 2008 Paper 2 Offline
14
Let two non-collinear unit vectors $$\widehat a$$ and $$\widehat b$$ form an acute angle. A point $$P$$ moves so that at any time $$t$$ the position vector $$\overrightarrow {OP} $$ (where $$O$$ is the origin) is given by $$\widehat a\cos t + \widehat b\sin t.$$ When $$P$$ is farthest from origin $$O,$$ let $$M$$ be the length of $$\overrightarrow {OP} $$ and $$\widehat u$$ be the unit vector along $$\overrightarrow {OP} $$. Then :
IIT-JEE 2008 Paper 2 Offline
15

The shortest distance between $${L_1}$$ and $${L_2}$$ is :

IIT-JEE 2008 Paper 2 Offline
16
The edges of a parallelopiped are of unit length and are parallel to non-coplanar unit vectors $$\overrightarrow a \,,\,\overrightarrow b ,\overrightarrow c $$ such that $$\widehat a\,.\,\widehat b = \widehat b\,.\,\widehat c = \widehat c\,.\,\widehat a = {1 \over 2}.$$ Then, the volume of the parallelopiped is :
IIT-JEE 2008 Paper 1 Offline
17
The minimum of distinct real values of $$\lambda ,$$ for which the vectors $$ - {\lambda ^2}\widehat i + \widehat j + \widehat k,$$ $$\widehat i - {\lambda ^2}\widehat j + \widehat k$$ and $$\widehat i + \widehat j - {\lambda ^2}\widehat k$$ are coplanar, is
IIT-JEE 2007
18
Let $$\overrightarrow a \,,\,\overrightarrow b ,\overrightarrow c $$ be unit vectors such that $${\overrightarrow a + \overrightarrow b + \overrightarrow c = \overrightarrow 0 .}$$ Which one of the following is correct ?
IIT-JEE 2007
19
Let the vectors $$\overrightarrow {PQ} ,\,\,\overrightarrow {QR} ,\,\,\overrightarrow {RS} ,\,\,\overrightarrow {ST} ,\,\,\overrightarrow {TU} ,$$ and $$\overrightarrow {UP} ,$$ represent the sides of a regular hexagon.

STATEMENT-1: $$\overrightarrow {PQ} \times \left( {\overrightarrow {RS} + \overrightarrow {ST} } \right) \ne \overrightarrow 0 .$$ because
STATEMENT-2: $$\overrightarrow {PQ} \times \overrightarrow {RS} = \overrightarrow 0 $$ and $$\overrightarrow {PQ} \times \overrightarrow {ST} \ne \overrightarrow 0 \,\,.$$

IIT-JEE 2007
20
Let $$\overrightarrow a = \widehat i + 2\widehat j + \widehat k,\,\overrightarrow b = \widehat i - \widehat j + \widehat k$$ and $$\overrightarrow c = \widehat i + \widehat j - \widehat k.$$ A vector in the plane of $$\overrightarrow a $$ and $$\overrightarrow b $$ whose projection on $$\overrightarrow c $$ is $${1 \over {\sqrt 3 }},$$ is
IIT-JEE 2006
21
If $$\overrightarrow a \,,\,\overrightarrow b ,\overrightarrow c $$ are three non-zero, non-coplanar vectors and
$$\overrightarrow {{b_1}} = \overrightarrow b - {{\overrightarrow b .\,\overrightarrow a } \over {{{\left| {\overrightarrow a } \right|}^2}}}\overrightarrow a ,\overrightarrow {{b_2}} = \overrightarrow b + {{\overrightarrow b .\,\overrightarrow a } \over {{{\left| {\overrightarrow a } \right|}^2}}}\overrightarrow a ,$$
$$\overrightarrow {{c_1}} = \overrightarrow c - {{\overrightarrow c .\,\overrightarrow a } \over {{{\left| {\overrightarrow a } \right|}^2}}}\overrightarrow a + {{\overrightarrow b .\,\overrightarrow c } \over {{{\left| c \right|}^2}}}{\overrightarrow b _1},\,\,\overrightarrow {{c_2}} = \overrightarrow c - {{\overrightarrow c .\,\overrightarrow a } \over {{{\left| {\overrightarrow a } \right|}^2}}}\overrightarrow a - {{\overrightarrow b \,.\,\overrightarrow c } \over {{{\left| {{{\overrightarrow b }_1}} \right|}^2}}}{\overrightarrow b _1},$$
$$\overrightarrow {{c_3}} = \overrightarrow c - {{\overrightarrow c .\,\overrightarrow a } \over {{{\left| {\overrightarrow c } \right|}^2}}}\overrightarrow a + {{\overrightarrow b .\,\overrightarrow c } \over {{{\left| c \right|}^2}}}{\overrightarrow b _1},\,\,\overrightarrow {{c_4}} = \overrightarrow c - {{\overrightarrow c .\,\overrightarrow a } \over {{{\left| {\overrightarrow c } \right|}^2}}}\overrightarrow a - {{\overrightarrow b \,.\,\overrightarrow c } \over {{{\left| {{{\overrightarrow b }_1}} \right|}^2}}}{\overrightarrow b _1},$$
then the set of orthogonal vectors is
IIT-JEE 2005 Screening
22
If $$\overrightarrow a = \left( {\widehat i + \widehat j + \widehat k} \right),\overrightarrow a .\overrightarrow b = 1$$ and $$\overrightarrow a \times \overrightarrow b = \widehat j - \widehat k,$$ then $$\overrightarrow b $$ is
IIT-JEE 2004 Screening
23
The unit vector which is orthogonal to the vector $$3\overrightarrow i + 2\overrightarrow j + 6\overrightarrow k $$ and is coplanar with the vectors $$\,2\widehat i + \widehat j + \widehat k$$ and $$\,\widehat i - \widehat j + \widehat k$$$$\,\,\,$$ is
IIT-JEE 2004 Screening
24
The value of $$'a'$$ so that the volume of parallelopiped formed by $$\widehat i + a\widehat j + \widehat k,\widehat j + a\widehat k$$ and $$a\widehat i + \widehat k$$ becomes minimum is
IIT-JEE 2003 Screening
25
Let $$\overrightarrow V = 2\overrightarrow i + \overrightarrow j - \overrightarrow k $$ and $$\overrightarrow W = \overrightarrow i + 3\overrightarrow k .$$ If $$\overrightarrow U $$ is a unit vector, then the maximum value of the scalar triple product $$\left| {\overrightarrow U \overrightarrow V \overrightarrow W } \right|$$ is
IIT-JEE 2002 Screening
26
If $${\overrightarrow a }$$ and $${\overrightarrow b }$$ are two unit vectors such that $${\overrightarrow a + 2\overrightarrow b }$$ and $${5\overrightarrow a - 4\overrightarrow b }$$ are perpendicular to each other then the angle between $$\overrightarrow a $$ and $$\overrightarrow b $$ is
IIT-JEE 2002 Screening
27
Let $$\overrightarrow a = \overrightarrow i - \overrightarrow k ,\overrightarrow b = x\overrightarrow i + \overrightarrow j + \left( {1 - x} \right)\overrightarrow k $$ and
$$\overrightarrow c = y\overrightarrow i - x\overrightarrow j + \left( {1 + x - y} \right)\overrightarrow k .$$ Then $$\left[ {\overrightarrow a \,\overrightarrow b \,\overrightarrow c } \right]$$ depends on
IIT-JEE 2001 Screening
28
If $$\overrightarrow a \,,\,\overrightarrow b $$ and $$\overrightarrow c $$ are unit vectors, then $${\left| {\overrightarrow a - \overrightarrow b } \right|^2} + {\left| {\overrightarrow b - \overrightarrow c } \right|^2} + {\left| {\overrightarrow c - \overrightarrow a } \right|^2}$$ does NOT exceed
IIT-JEE 2001 Screening
29
If the vectors $$\overrightarrow a ,\overrightarrow b $$ and $$\overrightarrow c $$ form the sides $$BC,$$ $$CA$$ and $$AB$$ respectively of a triangle $$ABC,$$ then
IIT-JEE 2000 Screening
30
Let the vectors $$\overrightarrow a ,\overrightarrow b ,\overrightarrow c $$ and $$\overrightarrow d $$ be such that
$$\left( {\overrightarrow a \times \overrightarrow b } \right) \times \left( {\overrightarrow c \times \overrightarrow d } \right) = 0.$$ Let $${P_1}$$ and $${P_2}$$ be planes determined
by the pairs of vectors $$\overrightarrow a .\overrightarrow b $$ and $$\overrightarrow c .\overrightarrow d $$ respectively. Then the angle between $${P_1}$$ and $${P_2}$$ is
IIT-JEE 2000 Screening
31
If $$\overrightarrow a \,,\,\overrightarrow b $$ and $$\overrightarrow c $$ are unit coplanar vectors, then the scalar triple product $$\left[ {2\overrightarrow a - \overrightarrow b ,2\overrightarrow b - \overrightarrow c ,2\overrightarrow c - \overrightarrow a } \right] = $$
IIT-JEE 2000 Screening
32
Let $$a=2i+j-2k$$ and $$b=i+j.$$ If $$c$$ is a vector such that $$a.$$ $$c = \left| c \right|,\left| {c - a} \right| = 2\sqrt 2 $$ and the angle between $$\left( {a \times b} \right)$$ and $$c$$ is $${30^ \circ },$$ then $$\left| {\left( {a \times b} \right) \times c} \right| = $$
IIT-JEE 1999
33
Let $$a=2i+j+k, b=i+2j-k$$ and a unit vector $$c$$ be coplanar. If $$c$$ is perpendicular to $$a,$$ then $$c =$$
IIT-JEE 1999
34
For three vectors $$u,v,w$$ which of the following expression is not equal to any of the remaining three?
IIT-JEE 1998
35
If $$a = i + j + k,\overrightarrow b = 4i + 3j + 4k$$ and $$c = i + \alpha j + \beta k$$ are linearly dependent vectors and $$\left| c \right| = \sqrt 3 ,$$ then
IIT-JEE 1998
36
If $$\overrightarrow a ,$$ $$\overrightarrow b $$ and $$\overrightarrow c $$ are three non coplanar vectors, then
$$\left( {\overrightarrow a + \overrightarrow b + \overrightarrow c } \right).\left[ {\left( {\overrightarrow a + \overrightarrow b } \right) \times \left( {\overrightarrow a + \overrightarrow c } \right)} \right]$$ equals
IIT-JEE 1995 Screening
37
Let $$\overrightarrow u ,\overrightarrow v $$ and $$\overrightarrow w $$ be vectors such that $$\overrightarrow u + \overrightarrow v + \overrightarrow w = 0.$$ If $$\left| {\overrightarrow u } \right| = 3,\left| {\overrightarrow v } \right| = 4$$ and $$\left| {\overrightarrow w } \right| = 5,$$ then $$\overrightarrow u .\overrightarrow v + \overrightarrow v .\overrightarrow w + \overrightarrow w .\overrightarrow u $$ is
IIT-JEE 1995 Screening
38
If $$\overrightarrow a ,\overrightarrow b ,\overrightarrow c $$ are non coplanar unit vectors such that $$\overrightarrow a \times \left( {\overrightarrow b \times \overrightarrow c } \right) = {{\left( {\overrightarrow b + \overrightarrow c } \right)} \over {\sqrt 2 }},\,\,$$ then the angle between $$\overrightarrow a $$ and $$\overrightarrow b $$ is
IIT-JEE 1995 Screening
39
Let $$\overrightarrow a = \widehat i - \widehat j,\overrightarrow b = \widehat j - \widehat k,\overrightarrow c = \widehat k - \widehat i.$$ If $$\overrightarrow d $$ is a unit vector such that $$\overrightarrow a .\overrightarrow d = 0 = \left[ {\overrightarrow b \overrightarrow c \overrightarrow d } \right],$$ then $$\overrightarrow d $$ equals
IIT-JEE 1995 Screening
40
Let $$a, b, c$$ be distinct non-negative numbers. If the vectors $$a\widehat i + a\widehat j + c\widehat k,\widehat i + \widehat k$$ and $$c\widehat i + c\widehat j + b\widehat k$$ lie in a plane, then $$c$$ is
IIT-JEE 1993
41
Let $$\overrightarrow a ,\overrightarrow b ,\overrightarrow c ,$$ be three non-coplanar vectors and $$\overrightarrow p ,\overrightarrow q ,\overrightarrow r,$$ are vectors defined by the relations $$\overrightarrow p = {{\overrightarrow b \times \overrightarrow c } \over {\left[ {\overrightarrow a \overrightarrow b \overrightarrow c } \right]}},\,\,\overrightarrow q = {{\overrightarrow c \times \overrightarrow a } \over {\left[ {\overrightarrow a \overrightarrow b \overrightarrow c } \right]}},\,\,\overrightarrow r = {{\overrightarrow a \times \overrightarrow b } \over {\left[ {\overrightarrow a \overrightarrow b \overrightarrow c } \right]}}$$ then the value of the expression $$\left( {\overrightarrow a + \overrightarrow b } \right).\overrightarrow p + \left( {\overrightarrow b + \overrightarrow c } \right).\overrightarrow q + \left( {\overrightarrow c + \overrightarrow a } \right),\overrightarrow r $$ is equal to
IIT-JEE 1988
42
The number of vectors of unit length perpendicular to vectors $$\overrightarrow a = \left( {1,1,0} \right)$$ and $$\overrightarrow b = \left( {0,1,1} \right)$$ is
IIT-JEE 1987
43
Let $$\overrightarrow a = {a_1}i + {a_2}j + {a_3}k,\,\,\,\overrightarrow b = {b_1}i + {b_2}j + {b_3}k$$ and $$\overrightarrow c = {c_1}i + {c_2}j + {c_3}k$$ be three non-zero vectors such that $$\overrightarrow c $$ is a unit vector perpendicular to both the vectors $$\overrightarrow a $$ and $$\overrightarrow b .$$ If the angle between $$\overrightarrow a $$ and $$\overrightarrow b $$ is $${\pi \over 6},$$ then
$${\left| {\matrix{ {{a_1}} & {{a_2}} & {{a_3}} \cr {{b_1}} & {{b_2}} & {{b_3}} \cr {{c_1}} & {{c_2}} & {{c_3}} \cr } } \right|^2}$$ is equal to
IIT-JEE 1986
44
For non-zero vectors $${\overrightarrow a ,\,\overrightarrow b ,\overrightarrow c },$$ $$\left| {\left( {\overrightarrow a \times \overrightarrow b } \right).\overrightarrow c } \right| = \left| {\overrightarrow a } \right|\left| {\overrightarrow b } \right|\left| {\overrightarrow c } \right|$$ holds if and only if
IIT-JEE 1982
45
The scalar $$\overrightarrow A .\left( {\overrightarrow B + \overrightarrow C } \right) \times \left( {\overrightarrow A + \overrightarrow B + \overrightarrow C } \right)$$ equals :
IIT-JEE 1981

MCQ (More than One Correct Answer)

1
Let $\hat{\imath}, \hat{\jmath}$ and $\hat{k}$ be the unit vectors along the three positive coordinate axes. Let

$$ \begin{aligned} & \vec{a}=3 \hat{\imath}+\hat{\jmath}-\hat{k} \text {, } \\ & \vec{b}=\hat{\imath}+b_{2} \hat{\jmath}+b_{3} \hat{k}, \quad b_{2}, b_{3} \in \mathbb{R} \text {, } \\ & \vec{c}=c_{1} \hat{\imath}+c_{2} \hat{\jmath}+c_{3} \hat{k}, \quad c_{1}, c_{2}, c_{3} \in \mathbb{R} \end{aligned} $$

be three vectors such that $b_{2} b_{3}>0, \vec{a} \cdot \vec{b}=0$ and

$$ \left(\begin{array}{ccc} 0 & -c_{3} & c_{2} \\ c_{3} & 0 & -c_{1} \\ -c_{2} & c_{1} & 0 \end{array}\right)\left(\begin{array}{l} 1 \\ b_{2} \\ b_{3} \end{array}\right)=\left(\begin{array}{r} 3-c_{1} \\ 1-c_{2} \\ -1-c_{3} \end{array}\right) . $$

Then, which of the following is/are TRUE?
JEE Advanced 2022 Paper 2 Online
2
Let O be the origin and $$\overrightarrow {OA} = 2\widehat i + 2\widehat j + \widehat k$$ and $$\overrightarrow {OB} = \widehat i - 2\widehat j + 2\widehat k$$ and $$\overrightarrow {OC} = {1 \over 2}\left( {\overrightarrow {OB} - \lambda \overrightarrow {OA} } \right)$$ for some $$\lambda$$ > 0. If $$\left| {\overrightarrow {OB} \times \overrightarrow {OC} } \right| = {9 \over 2}$$, then which of the following statements is (are) TRUE?
JEE Advanced 2021 Paper 2 Online
3
Let a and b be positive real numbers. Suppose $$PQ = a\widehat i + b\widehat j$$ and $$PS = a\widehat i - b\widehat j$$ are adjacent sides of a parallelogram PQRS. Let u and v be the projection vectors of $$w = \widehat i + \widehat j$$ along PQ and PS, respectively. If |u| + |v| = |w| and if the area of the parallelogram PQRS is 8, then which of the following statements is/are TRUE?
JEE Advanced 2020 Paper 2 Offline
4
Let $$\widehat u = {u_1} \widehat i + {u_2}\widehat j + {u_3}\widehat k$$ be a unit vector in $${{R^3}}$$ and
$$\widehat w = {1 \over {\sqrt 6 }}\left( {\widehat i + \widehat j + 2\widehat k} \right).$$ Given that there exists a vector $${\overrightarrow v }$$ in $${{R^3}}$$ such that $$\left| {\widehat u \times \overrightarrow v } \right| = 1$$ and $$\widehat w.\left( {\widehat u \times \overrightarrow v } \right) = 1.$$ Which of the following statement(s) is (are) correct?
JEE Advanced 2016 Paper 2 Offline
5
Let $$\Delta PQR$$ be a triangle. Let $$\vec a = \overrightarrow {QR} ,\vec b = \overrightarrow {RP} $$ and $$\overrightarrow c = \overrightarrow {PQ} .$$ If $$\left| {\overrightarrow a } \right| = 12,\,\,\left| {\overrightarrow b } \right| = 4\sqrt 3 ,\,\,\,\overrightarrow b .\overrightarrow c = 24,$$ then which of the following is (are) true?
JEE Advanced 2015 Paper 1 Offline
6
Let $$\overrightarrow x ,\overrightarrow y $$ and $$\overrightarrow z $$ be three vectors each of magnitude $$\sqrt 2 $$ and the angle between each pair of them is $${\pi \over 3}$$. If $$\overrightarrow a $$ is a non-zero vector perpendicular to $$\overrightarrow x $$ and $$\overrightarrow y \times \overrightarrow z $$ and $$\overrightarrow b $$ is a non-zero vector perpendicular to $$\overrightarrow y $$ and $$\overrightarrow z \times \overrightarrow x ,$$ then
JEE Advanced 2014 Paper 1 Offline
7
The vector (s) which is/are coplanar with vectors $${\widehat i + \widehat j + 2\widehat k}$$ and $${\widehat i + 2\widehat j + \widehat k,}$$ and perpendicular to the vector $${\widehat i + \widehat j + \widehat k}$$ is/are
IIT-JEE 2011 Paper 1 Offline
8
Let $$a$$ and $$b$$ two non-collinear unit vectors. If $$u = a - \left( {a\,.\,b} \right)\,b$$ and $$v = a \times b,$$ then $$\left| v \right|$$ is
IIT-JEE 1999
9
Which of the following expressions are meaningful?
IIT-JEE 1998
10
The vector $$\,{1 \over 3}\left( {2\widehat i - 2\widehat j + \widehat k} \right)$$ is
IIT-JEE 1994
11
Let $$\vec a = 2\hat i - \hat j + \hat k,\vec b = \hat i + 2\hat j - \hat k$$ and $$\overrightarrow c = \widehat i + \widehat j - 2\widehat k - 2\widehat k$$ be three vectors. A vector in the plane of $${\overrightarrow b }$$ and $${\overrightarrow c }$$, whose projection on $${\overrightarrow a }$$ is of magnitude $$\sqrt {2/3,} $$ is :
IIT-JEE 1993

Subjective

1
Match the folowing :
(A)$$\,\,\,$$Two rays $$x + y = \left| a \right|$$ and $$ax - y=1$$ intersects each other in the
$$\,\,\,\,\,\,\,\,\,\,$$first quadrant in interval $$a \in \left( {{a_0},\,\,\infty } \right),$$ the value of $${{a_0}}$$ is
(B)$$\,\,\,$$ Point $$\left( {\alpha ,\beta ,\gamma } \right)$$ lies on the plane $$x+y+z=2.$$
$$\,\,\,\,\,\,\,\,\,\,\,$$Let $$\overrightarrow a = \alpha \widehat i + \beta \widehat j + \gamma \widehat k,\widehat k \times \left( {\widehat k \times \overrightarrow a } \right) = 0,$$ then $$\gamma = $$
(C)$$\,\,\,$$$$\left| {\int\limits_0^1 {\left( {1 - {y^2}} \right)dy} } \right| + \left| {\int\limits_1^0 {\left( {{y^2} - 1} \right)dy} } \right|$$
(D)$$\,\,\,$$If $$\sin A\,\,\sin B\,\,\sin C + \cos A\,\,\cos B = 1,$$ then the value of $$\sin C = $$

(p)$$\,\,\,$$ $$2$$
(q)$$\,\,\,$$ $${4 \over 3}$$
(r)$$\,\,\,$$ $$\left| {\int\limits_0^1 {\sqrt {1 - xdx} } } \right| + \left| {\int\limits_{ - 1}^0 {\sqrt {1 + xdx} } } \right|$$
(s)$$\,\,\,$$ $$1$$

IIT-JEE 2006
2
If the incident ray on a surface is along the unit vector $$\widehat v\,\,,$$ the reflected ray is along the unit vector $$\widehat w\,\,$$ and the normal is along unit vector $$\widehat a\,\,$$ outwards. Express $$\widehat w\,\,$$ in terms of $$\widehat a\,\,$$ and $$\widehat v\,\,.$$ IIT-JEE 2005 Mathematics - Vector Algebra Question 25 English
IIT-JEE 2005
3
If $$\overrightarrow a ,\overrightarrow b ,\overrightarrow c $$ and $$\overrightarrow d $$ are distinct vectors such that
$$\,\overrightarrow a \times \overrightarrow c = \overrightarrow b \times \overrightarrow d $$ and $$\overrightarrow a \times \overrightarrow b = \overrightarrow c \times \overrightarrow d \,.$$ Prove that
$$\left( {\overrightarrow a - \overrightarrow d } \right).\left( {\overrightarrow b - \overrightarrow c } \right) \ne 0\,\,i.e.\,\,\,\overrightarrow a .\overrightarrow b + \overrightarrow d .\overrightarrow c \ne \overrightarrow d .\overrightarrow b + \overrightarrow a .\overrightarrow c $$
IIT-JEE 2004
4
If $$\overrightarrow u ,\overrightarrow v ,\overrightarrow w ,$$ are three non-coplanar unit vectors and $$\alpha ,\beta ,\gamma $$ are the angles between $$\overrightarrow u $$ and $$\overrightarrow v $$ and $$\overrightarrow w ,$$ $$\overrightarrow w $$ and $$\overrightarrow u $$ respectively and $$\overrightarrow x ,\overrightarrow y ,\overrightarrow z ,$$ are unit vectors along the bisectors of the angles $$\alpha ,\,\,\beta ,\,\,\gamma $$ respectively. Prove that $$\,\left[ {\overrightarrow x \times \overrightarrow y \,\,\overrightarrow y \times \overrightarrow z \,\,\overrightarrow z \times \overrightarrow x } \right] = {1 \over {16}}{\left[ {\overrightarrow u \,\,\overrightarrow v \,\,\overrightarrow w } \right]^2}\,{\sec ^2}{\alpha \over 2}{\sec ^2}{\beta \over 2}{\sec ^2}{\gamma \over 2}.$$
IIT-JEE 2003
5
Let $$V$$ be the volume of the parallelopiped formed by the vectors $$\overrightarrow a = {a_1}\widehat i + {a_2}\widehat j + {a_3}\widehat k,$$ $$\,\,\,\,\overrightarrow b = {b_1}\widehat i + {b_2}\widehat j + {b_3}\widehat k,$$ $$\,\,\,\,\,\overrightarrow c = {c_1}\widehat i + {c_2}\widehat j + {c_3}\widehat k.$$ where $$r=1, 2, 3,$$ are non-negative real numbers and $$\sum\limits_{r = 1}^3 {\left( {{a_r} + {b_r} + {c_r}} \right) = 3L,} $$ show that $$V \le {L^3}\,\,.$$
IIT-JEE 2002
6
Find $$3-$$dimensional vectors $${\overrightarrow v _1},{\overrightarrow v _2},{\overrightarrow v _3}$$ satisfying
$$\,{\overrightarrow v _1}.{\overrightarrow v _1} = 4,\,{\overrightarrow v _1}.{\overrightarrow v _2} = - 2,\,{\overrightarrow v _1}.{\overrightarrow v _3} = 6,\,\,{\overrightarrow v _2}.{\overrightarrow v _2}$$
$$ = 2,\,{\overrightarrow v _2}.{\overrightarrow v _3} = - 5,\,{\overrightarrow v _3}.{\overrightarrow v _3} = 29$$
IIT-JEE 2001
7
Let $$\overrightarrow A \left( t \right) = {f_1}\left( t \right)\widehat i + {f_2}\left( t \right)\widehat j$$ and $$$\overrightarrow B \left( t \right) = {g_1}\left( t \right)\overrightarrow i + {g_2}\left( t \right)\widehat j,t \in \left[ {0,1} \right],$$$
where $${f_1},{f_2},{g_1},{g_2}$$ are continuous functions. If $$\overrightarrow A \left( t \right)$$ and $$\overrightarrow B \left( t \right)$$ are nonzero vectors for all $$t$$ and $$\overrightarrow A \left( 0 \right) = 2\widehat i + 3\widehat j,$$ $$\,\overrightarrow A \left( 1 \right) = 6\widehat i + 2\widehat j,$$ $$\,\overrightarrow B \left( 0 \right) = 3\widehat i + 2\widehat j$$ and $$\,\overrightarrow B \left( 1 \right) = 2\widehat i + 6\widehat j.$$ Then show that $$\,\overrightarrow A \left( t \right)$$ and $$\,\overrightarrow B \left( t \right)$$ are parallel for some $$t.$$
IIT-JEE 2001
8
Show, by vector methods, that the angular bisectors of a triangle are concurrent and find an expression for the position vector of the point of concurrency in terms of the position vectors of the vertices.
IIT-JEE 2001
9
Let $$u$$ and $$v$$ be units vectors. If $$w$$ is a vector such that $$w + \left( {w \times u} \right) = v,$$ then prove that $$\left| {\left( {u \times v} \right) \cdot w} \right| \le 1/2$$ and that the equality holds if and only if $$u$$ is perpendicular to $$v .$$
IIT-JEE 1999
10
Prove, by vector methods or otherwise, that the point of intersection of the diagonals of a trapezium lies on the line passing through the mid-points of the parallel sides. (You may assume that the trapezium is not a parallelogram.)
IIT-JEE 1998
11
For any two vectors $$u$$ and $$v,$$ prove that
(a) $${\left( {u\,.\,v} \right)^2} + {\left| {u \times v} \right|^2} = {\left| u \right|^2}{\left| v \right|^2}$$ and
(b) $$\left( {1 + {{\left| u \right|}^2}} \right)\left( {1 + {{\left| v \right|}^2}} \right) = {\left( {1 - u.v} \right)^2} + {\left| {u + v + \left( {u \times v} \right)} \right|^2}.$$
IIT-JEE 1998
12
If $$A,B$$ and $$C$$ are vectors such that $$\left| B \right| = \left| C \right|.$$ Prove that
$$\left[ {\left( {A + B} \right) \times \left( {A + C} \right)} \right] \times \left( {B \times C} \right)\left( {B + C} \right) = 0\,\,.$$
IIT-JEE 1997
13
If the vectors $$\overrightarrow b ,\overrightarrow c ,\overrightarrow d ,$$ are not coplanar, then prove that the vector
$$\left( {\overrightarrow a \times \overrightarrow b } \right) \times \left( {\overrightarrow c \times \overrightarrow d } \right) + \left( {\overrightarrow a \times \overrightarrow c } \right) \times \left( {\overrightarrow d \times \overrightarrow b } \right) + \left( {\overrightarrow a \times \overrightarrow d } \right) \times \left( {\overrightarrow b \times \overrightarrow c } \right)$$ is parallel to $$\overrightarrow a .$$
IIT-JEE 1994
14
In a triangle $$ABC, D$$ and $$E$$ are points on $$BC$$ and $$AC$$ respectively, such that $$BD=2DC$$ and $$AE=3EC.$$ Let $$P$$ be the point of intersection of $$AD$$ and $$BE.$$ Find $$BP/PE$$ using vector methods.
IIT-JEE 1993
15
Determine the value of $$'c'$$ so that for all real $$x,$$ the vector
$$cx\widehat i - 6\widehat j - 3\widehat k$$ and $$x\widehat i + 2\widehat j + 2cx\widehat k$$ make an obtuse angle with each other.
IIT-JEE 1991
16
Let $$\overrightarrow A = 2\overrightarrow i + \overrightarrow k ,\,\overrightarrow B = \overrightarrow i + \overrightarrow j + \overrightarrow k ,$$ and $$\overrightarrow C = 4\overrightarrow i - 3\overrightarrow j + 7\overrightarrow k .$$ Determine a vector $$\overrightarrow R .$$ Satisfying $$\overrightarrow R \times \overrightarrow B = \overrightarrow C \times \overrightarrow B $$ and $$\overrightarrow R \,.\,\overrightarrow A = 0$$
IIT-JEE 1990
17
If vectors $$\overrightarrow A ,\overrightarrow B ,\overrightarrow C $$ are coplanar, show that $$$\left| {\matrix{ {} & {\overrightarrow {a.} } & {} & {\overrightarrow {b.} } & {} & {\overrightarrow {c.} } \cr {\overrightarrow {a.} } & {\overrightarrow {a.} } & {\overrightarrow {a.} } & {\overrightarrow {b.} } & {\overrightarrow {a.} } & {\overrightarrow {c.} } \cr {\overrightarrow {b.} } & {\overrightarrow {a.} } & {\overrightarrow {b.} } & {\overrightarrow {b.} } & {\overrightarrow {b.} } & {\overrightarrow {c.} } \cr } } \right| = \overrightarrow 0 $$$
IIT-JEE 1989
18
In a triangle $$OAB,E$$ is the midpoint of $$BO$$ and $$D$$ is a point on $$AB$$ such that $$AD:DB=2:1.$$ If $$OD$$ and $$AE$$ intersect at $$P,$$ determine the ratio $$OP:PD$$ using vector methods.
IIT-JEE 1989
19
Let $$OA$$ $$CB$$ be a parallelogram with $$O$$ at the origin and $$OC$$ a diagonal. Let $$D$$ be the midpoint of $$OA.$$ Using vector methods prove that $$BD$$ and $$CO$$ intersect in the same ratio. Determine this ratio.
IIT-JEE 1988
20
If $$A, B, C, D$$ are any four points in space, prove that -
$$\left| {\overrightarrow {AB} \times \overrightarrow {CD} + \overrightarrow {BC} \times \overrightarrow {AD} + \overrightarrow {CA} \times \overrightarrow {BD} } \right| = 4$$ (area of triangle $$ABC$$)
IIT-JEE 1987
21
The position vectors of the points $$A, B, C$$ and $$D$$ are $$3\widehat i - 2\widehat j - \widehat k,\,2\widehat i + 3\widehat j - 4\widehat k,\, - \widehat i + \widehat j + 2\widehat k$$ and $$4\widehat i + 5\widehat j + \lambda \widehat k,$$
respectively. If the points $$A, B, C$$ and $$D$$ lie on a plane, find the value of $$\lambda .$$
IIT-JEE 1986
22
$${A_1},{A_2},.................{A_n}$$ are the vertices of a regular plane polygon with $$n$$ sides and $$O$$ is its centre. Show that
$$\sum\limits_{i = 1}^{n - 1} {\left( {\overrightarrow {O{A_i}} \times {{\overrightarrow {OA} }_{i + 1}}} \right) = \left( {1 - n} \right)\left( {{{\overrightarrow {OA} }_2} \times {{\overrightarrow {OA} }_1}} \right)} $$
IIT-JEE 1982
23
Find all values of $$\lambda $$ such that $$x, y, z,$$$$\, \ne $$$$(0,0,0)$$ and
$$\left( {\overrightarrow i + \overrightarrow j + 3\overrightarrow k } \right)x + \left( {3\overrightarrow i - 3\overrightarrow j + \overrightarrow k } \right)y + \left( { - 4\overrightarrow i + 5\overrightarrow j } \right)z$$
$$ = \lambda \left( {x\overrightarrow i \times \overrightarrow j \,\,y + \overrightarrow k \,z} \right)$$ where $$\overrightarrow i ,\,\,\overrightarrow j ,\,\,\overrightarrow k $$ are unit vectors along the coordinate axes.
IIT-JEE 1982

Fill in the Blanks

1
Let $$OA=a,$$ $$OB=10a+2b$$ and $$OC=b$$ where $$O,A$$ and $$C$$ are non-collinear points. Let $$p$$ denote the area of the quadrilateral $$OABC,$$ and let $$q$$ denote the area of the parallelogram with $$OA$$ and $$OC$$ as adjacent sides. If $$p=kq,$$ then $$k=$$.........
IIT-JEE 1997
2
If $$\overrightarrow b \,$$ and $$\overrightarrow c \,$$ are two non-collinear unit vectors and $$\overrightarrow a \,$$ is any vector, then $$\left( {\overrightarrow a .\overrightarrow b } \right)\overrightarrow b + \left( {\overrightarrow a .\overrightarrow c } \right)\overrightarrow c + {{\overrightarrow a .\left( {\overrightarrow b \times \overrightarrow c } \right)} \over {\left| {\overrightarrow b \times \overrightarrow c } \right|}}\left( {\overrightarrow b \times \overrightarrow c } \right) = $$ ..............
IIT-JEE 1996
3
A nonzero vector $$\overrightarrow a $$ is parallel to the line of intersection of the plane determined by the vectors $$\widehat i,\widehat i + \widehat j$$ and the plane determined by the vectors $$\widehat i - \widehat j,\widehat i + \widehat k.$$ The angle between $$\overrightarrow a $$ and the vector $$\widehat i - 2\widehat j + 2\widehat k$$ is ................
IIT-JEE 1996
4
A unit vector coplanar with $$\overrightarrow i + \overrightarrow j + 2\overrightarrow k $$ and $$\overrightarrow i + 2\overrightarrow j + \overrightarrow k $$ and perpendicular to $$\overrightarrow i + \overrightarrow j + \overrightarrow k $$ is ...........
IIT-JEE 1992
5
Given that $$\overrightarrow a = \left( {1,1,1} \right),\,\,\overrightarrow c = \left( {0,1, - 1} \right),\,\overrightarrow a .\overrightarrow b = 3$$ and $$\overrightarrow a \times \overrightarrow b = \overrightarrow c ,$$ then $$\overrightarrow b \, = $$.........
IIT-JEE 1991
6
The components of a vector $$\overrightarrow a $$ along and perpendicular to a non-zero vector $$\overrightarrow b $$ are ......and .....respectively.
IIT-JEE 1988
7
Let $$b = 4\widehat i + 3\widehat j$$ and $$\overrightarrow c $$ be two vectors perpendicular to each other in the $$xy$$-plane. All vectors in the same plane having projecttions $$1$$ and $$2$$ along $$\overrightarrow b $$ and $$\overrightarrow c, $$ respectively, are given by ...........
IIT-JEE 1987
8
If the vectors $$a\widehat i + \widehat j + \widehat k,\,\,\widehat i + b\widehat j + \widehat k$$ and $$\widehat i + \widehat j + c\widehat k$$
$$\left( {a \ne b \ne c \ne 1} \right)$$ are coplannar, then the value of $${1 \over {\left( {1 - a} \right)}} + {1 \over {\left( {1 - b} \right)}} + {1 \over {\left( {1 - c} \right)}} = ..........$$
IIT-JEE 1987
9
If $$\overrightarrow A \overrightarrow {\,B} \overrightarrow {\,C} $$ are three non-coplannar vectors, then -
$${{\overrightarrow A .\overrightarrow B \times \overrightarrow C } \over {\overrightarrow C \times \overrightarrow A .\overrightarrow B }} + {{\overrightarrow B .\overrightarrow A \times \overrightarrow C } \over {\overrightarrow C .\overrightarrow A \times \overrightarrow B }} = $$ ................
IIT-JEE 1985
10
If $$\overrightarrow A = \left( {1,1,1} \right),\,\,\overrightarrow C = \left( {0,1, - 1} \right)$$ are given vectors, then a vector $$B$$ satifying the equations $$\overrightarrow A \times \overrightarrow B = \overrightarrow {\,C} $$ and $$\overrightarrow A .\overrightarrow B = \overrightarrow {3\,} $$ ..........
IIT-JEE 1985
11
$$A, B, C$$ and $$D,$$ are four points in a plane with position vectors $$a, b, c$$ and $$d$$ respectively such that $$$\left( {\overrightarrow a - \overrightarrow d } \right)\left( {\overrightarrow b - \overrightarrow c } \right) = \left( {\overrightarrow b - \overrightarrow d } \right)\left( {\overrightarrow c - \overrightarrow a } \right) = 0$$$

The point $$D,$$ then, is the ................ of the triangle $$ABC.$$

IIT-JEE 1984
12
Let $$\overrightarrow A ,\overrightarrow B ,\overrightarrow C $$ be vectors of length $$3, 4, 5$$ respectively. Let $$\overrightarrow A $$ be perpendicular to $$\overrightarrow B + \overrightarrow C ,\overrightarrow B $$ to $$\overrightarrow C + \overrightarrow A $$ to $$\overrightarrow A + \overrightarrow B .$$ Then the length of vector $$\overrightarrow A + \overrightarrow B + \overrightarrow C $$ is ..........
IIT-JEE 1981

True or False

EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12