Vector Algebra · Mathematics · JEE Advanced
Numerical
Let $\vec{p}=2 \hat{i}+\hat{j}+3 \hat{k}$ and $\vec{q}=\hat{i}-\hat{j}+\hat{k}$. If for some real numbers $\alpha, \beta$, and $\gamma$, we have
$$ 15 \hat{i}+10 \hat{j}+6 \hat{k}=\alpha(2 \vec{p}+\vec{q})+\beta(\vec{p}-2 \vec{q})+\gamma(\vec{p} \times \vec{q}), $$
then the value of $\gamma$ is ________.
Let $\overrightarrow{O P}=\frac{\alpha-1}{\alpha} \hat{i}+\hat{j}+\hat{k}, \overrightarrow{O Q}=\hat{i}+\frac{\beta-1}{\beta} \hat{j}+\hat{k}$ and $\overrightarrow{O R}=\hat{i}+\hat{j}+\frac{1}{2} \hat{k}$ be three vectors, where $\alpha, \beta \in \mathbb{R}-\{0\}$ and $O$ denotes the origin. If $(\overrightarrow{O P} \times \overrightarrow{O Q}) \cdot \overrightarrow{O R}=0$ and the point $(\alpha, \beta, 2)$ lies on the plane $3 x+3 y-z+l=0$, then the value of $l$ is ____________.
If the volume of the paralleopiped, whose adjacent sides are represented by the vectors, $$\overrightarrow u $$, $$\overrightarrow v $$ and $$\overrightarrow w $$, is $$\sqrt 2 $$, then the value of $$\left| {3\overrightarrow u + 5\overrightarrow v } \right|$$ is ___________.
minimum value of ($$\overrightarrow c$$ $$-$$($$\overrightarrow a$$ $$ \times $$ $$\overrightarrow b$$)).$$\overrightarrow c$$ equals ................
$${\left| {\overrightarrow a - \overrightarrow b } \right|^2} + {\left| {\overrightarrow b - \overrightarrow c } \right|^2} + {\left| {\overrightarrow c - \overrightarrow a } \right|^2} = 9,$$ then $$\left| {2\overrightarrow a + 5\overrightarrow b + 5\overrightarrow c } \right|$$ is
MCQ (Single Correct Answer)
$$\overrightarrow{OP}$$ . $$\overrightarrow{OQ}$$ + $$\overrightarrow{OR}$$ . $$\overrightarrow{OS}$$ = $$\overrightarrow{OR}$$ . $$\overrightarrow{OP}$$ + $$\overrightarrow{OQ}$$ . $$\overrightarrow{OS}$$ = $$\overrightarrow{OQ}$$ . $$\overrightarrow{OR}$$ + $$\overrightarrow{OP}$$ . $$\overrightarrow{OS}$$
Then the triangle PQR has S as its
$$\,\,\,\,$$ $$\,\,\,\,$$ $$\,\,\,\,$$ Column $$I$$
(A)$$\,\,\,\,$$ In $${R^2},$$ If the magnitude of the projection vector of the vector $$\alpha \widehat i + \beta \widehat j$$ on $$\sqrt 3 \widehat i + \widehat j$$ and If $$\alpha = 2 + \sqrt 3 \beta ,$$ then possible value of $$\left| \alpha \right|$$ is/are
(B)$$\,\,\,\,$$ Let $$a$$ and $$b$$ be real numbers such that the function $$f\left( x \right) = \left\{ {\matrix{
{ - 3a{x^2} - 2,} & {x < 1} \cr
{bx + {a^2},} & {x \ge 1} \cr
} } \right.$$ if differentiable for all $$x \in R$$. Then possible value of $$a$$ is (are)
(C)$$\,\,\,\,$$ Let $$\omega \ne 1$$ be a complex cube root of unity. If $${\left( {3 - 3\omega + 2{\omega ^2}} \right)^{4n + 3}} + {\left( {2 + 3\omega - 3{\omega ^2}} \right)^{4n + 3}} + {\left( { - 3 + 2\omega + 3{\omega ^2}} \right)^{4n + 3}} = 0,$$ then possible value (s) of $$n$$ is (are)
(D)$$\,\,\,\,$$ Let the harmonic mean of two positive real numbers $$a$$ and $$b$$ be $$4.$$ If $$q$$ is a positive real nimber such that $$a, 5, q, b$$ is an arithmetic progression, then the value(s) of $$\left| {q - a} \right|$$ is (are)
$$\,\,\,\,$$ $$\,\,\,\,$$ $$\,\,\,\,$$ Column $$II$$
(p)$$\,\,\,\,$$ $$1$$
(q)$$\,\,\,\,$$ $$2$$
(r)$$\,\,\,\,$$ $$3$$
(s)$$\,\,\,\,$$ $$4$$
(t)$$\,\,\,\,$$ $$5$$
$$\,\,\,\,$$ $$\,\,\,\,$$ $$\,\,\,\,$$ List $$I$$
(P.)$$\,\,\,\,$$ Volume of parallelopiped determined by vectors $$\overrightarrow a ,\overrightarrow b $$ and $$\overrightarrow c $$ is $$2.$$ Then the volume of the parallelepiped determined by vectors $$2\left( {\overrightarrow a \times \overrightarrow b } \right),3\left( {\overrightarrow b \times \overrightarrow c } \right)$$ and $$\left( {\overrightarrow c \times \overrightarrow a } \right)$$ is
(Q.)$$\,\,\,\,$$ Volume of parallelopiped determined by vectors $$\overrightarrow a ,\overrightarrow b $$ and $$\overrightarrow c $$ is $$5.$$ Then the volume of the parallelepiped determined by vectors $$3\left( {\overrightarrow a + \overrightarrow b } \right),\left( {\overrightarrow b + \overrightarrow c } \right)$$ and $$2\left( {\overrightarrow c + \overrightarrow a } \right)$$ is
(R.)$$\,\,\,\,$$ Area of a triangle with adjacent sides determined by vectors $${\overrightarrow a }$$ and $${\overrightarrow b }$$ is $$20.$$ Then the area of the triangle with adjacent sides determined by vectors $$\left( {2\overrightarrow a + 3\overrightarrow b } \right)$$ and $$\left( {\overrightarrow a - \overrightarrow b } \right)$$ is
(S.)$$\,\,\,\,$$ Area of a parallelogram with adjacent sides determined by vectors $${\overrightarrow a }$$ and $${\overrightarrow b }$$ is $$30.$$ Then the area of the parallelogram with adjacent sides determined by vectors $$\left( {\overrightarrow a + \overrightarrow b } \right)$$ and $${\overrightarrow a }$$ is
$$\,\,\,\,$$ $$\,\,\,\,$$ $$\,\,\,\,$$ List $$II$$
(1.)$$\,\,\,\,$$ $$100$$
(2.)$$\,\,\,\,$$ $$30$$
(3.)$$\,\,\,\,$$ $$24$$
(4.)$$\,\,\,\,$$ $$60$$
$$\,\,\,\,$$ $$\,\,\,\,$$ $$\,\,\,\,$$ Column-$$I$$
(A) $$\,\,\,\,$$If $$\overrightarrow a = \widehat j + \sqrt 3 \widehat k,\overrightarrow b = - \widehat j + \sqrt 3 \widehat k$$ and $$\overrightarrow c = 2\sqrt 3 \widehat k$$ form a triangle, then the internal angle of the triangle between $$\overrightarrow a $$ and $$\overrightarrow b $$ is
(B)$$\,\,\,\,$$ If $$\int\limits_a^b {\left( {f\left( x \right) - 3x} \right)dx = {a^2} - {b^2},} $$ then the value of $$f$$ $$\left( {{\pi \over 6}} \right)$$ is
(C)$$\,\,\,\,$$ The value of $${{{\pi ^2}} \over {\ell n3}}\int\limits_{7/6}^{5/6} {\sec \left( {\pi x} \right)dx} $$ is
(D)$$\,\,\,\,$$ The maximum value of $$\left| {Arg\left( {{1 \over {1 - z}}} \right)} \right|$$ for $$\left| z \right| = 1,\,z \ne 1$$ is given by
$$\,\,\,\,$$ $$\,\,\,\,$$ $$\,\,\,\,$$ Column-$$II$$
(p)$$\,\,\,\,$$ $${{\pi \over 6}}$$
(q)$$\,\,\,\,$$ $${{2\pi \over 3}}$$
(r)$$\,\,\,\,$$ $${{\pi \over 3}}$$
(s)$$\,\,\,\,$$ $$\pi $$
(t) $$\,\,\,\,$$ $${{\pi \over 2}}$$
$$\overrightarrow {AB} = 2\widehat i + 10\widehat j + 11\widehat k$$ and $$\,\overrightarrow {AD} = -\widehat i + 2\widehat j + 2\widehat k$$
The side $$AD$$ is rotated by an acute angle $$\alpha $$ in the plane of the parallelogram so that $$AD$$ becomes $$AD'.$$ If $$AD'$$ makes a right angle with the side $$AB,$$ then the cosine of the angle $$\alpha $$ is given by
If $$\overrightarrow a ,\overrightarrow b ,\overrightarrow c $$ and $$\overrightarrow d $$ are unit vectors such that $$(\overrightarrow a \times \overrightarrow b )\,.\,(\overrightarrow c \times \overrightarrow d ) = 1$$ and $$\overrightarrow a \,.\,\overrightarrow c = {1 \over 2}$$, then
The unit vector perpendicular to both $${L_1}$$ and $${L_2}$$ is :
The shortest distance between $${L_1}$$ and $${L_2}$$ is :
STATEMENT-1: $$\overrightarrow {PQ} \times \left( {\overrightarrow {RS} + \overrightarrow {ST} } \right) \ne \overrightarrow 0 .$$ because
STATEMENT-2: $$\overrightarrow {PQ} \times \overrightarrow {RS} = \overrightarrow 0 $$ and $$\overrightarrow {PQ} \times \overrightarrow {ST} \ne \overrightarrow 0 \,\,.$$
$$\overrightarrow {{b_1}} = \overrightarrow b - {{\overrightarrow b .\,\overrightarrow a } \over {{{\left| {\overrightarrow a } \right|}^2}}}\overrightarrow a ,\overrightarrow {{b_2}} = \overrightarrow b + {{\overrightarrow b .\,\overrightarrow a } \over {{{\left| {\overrightarrow a } \right|}^2}}}\overrightarrow a ,$$
$$\overrightarrow {{c_1}} = \overrightarrow c - {{\overrightarrow c .\,\overrightarrow a } \over {{{\left| {\overrightarrow a } \right|}^2}}}\overrightarrow a + {{\overrightarrow b .\,\overrightarrow c } \over {{{\left| c \right|}^2}}}{\overrightarrow b _1},\,\,\overrightarrow {{c_2}} = \overrightarrow c - {{\overrightarrow c .\,\overrightarrow a } \over {{{\left| {\overrightarrow a } \right|}^2}}}\overrightarrow a - {{\overrightarrow b \,.\,\overrightarrow c } \over {{{\left| {{{\overrightarrow b }_1}} \right|}^2}}}{\overrightarrow b _1},$$
$$\overrightarrow {{c_3}} = \overrightarrow c - {{\overrightarrow c .\,\overrightarrow a } \over {{{\left| {\overrightarrow c } \right|}^2}}}\overrightarrow a + {{\overrightarrow b .\,\overrightarrow c } \over {{{\left| c \right|}^2}}}{\overrightarrow b _1},\,\,\overrightarrow {{c_4}} = \overrightarrow c - {{\overrightarrow c .\,\overrightarrow a } \over {{{\left| {\overrightarrow c } \right|}^2}}}\overrightarrow a - {{\overrightarrow b \,.\,\overrightarrow c } \over {{{\left| {{{\overrightarrow b }_1}} \right|}^2}}}{\overrightarrow b _1},$$
then the set of orthogonal vectors is
$$\overrightarrow c = y\overrightarrow i - x\overrightarrow j + \left( {1 + x - y} \right)\overrightarrow k .$$ Then $$\left[ {\overrightarrow a \,\overrightarrow b \,\overrightarrow c } \right]$$ depends on
$$\left( {\overrightarrow a \times \overrightarrow b } \right) \times \left( {\overrightarrow c \times \overrightarrow d } \right) = 0.$$ Let $${P_1}$$ and $${P_2}$$ be planes determined
by the pairs of vectors $$\overrightarrow a .\overrightarrow b $$ and $$\overrightarrow c .\overrightarrow d $$ respectively. Then the angle between $${P_1}$$ and $${P_2}$$ is
$$\left( {\overrightarrow a + \overrightarrow b + \overrightarrow c } \right).\left[ {\left( {\overrightarrow a + \overrightarrow b } \right) \times \left( {\overrightarrow a + \overrightarrow c } \right)} \right]$$ equals
$${\left| {\matrix{ {{a_1}} & {{a_2}} & {{a_3}} \cr {{b_1}} & {{b_2}} & {{b_3}} \cr {{c_1}} & {{c_2}} & {{c_3}} \cr } } \right|^2}$$ is equal to
MCQ (More than One Correct Answer)
$$ \begin{aligned} & \vec{a}=3 \hat{\imath}+\hat{\jmath}-\hat{k} \text {, } \\ & \vec{b}=\hat{\imath}+b_{2} \hat{\jmath}+b_{3} \hat{k}, \quad b_{2}, b_{3} \in \mathbb{R} \text {, } \\ & \vec{c}=c_{1} \hat{\imath}+c_{2} \hat{\jmath}+c_{3} \hat{k}, \quad c_{1}, c_{2}, c_{3} \in \mathbb{R} \end{aligned} $$
be three vectors such that $b_{2} b_{3}>0, \vec{a} \cdot \vec{b}=0$ and
$$ \left(\begin{array}{ccc} 0 & -c_{3} & c_{2} \\ c_{3} & 0 & -c_{1} \\ -c_{2} & c_{1} & 0 \end{array}\right)\left(\begin{array}{l} 1 \\ b_{2} \\ b_{3} \end{array}\right)=\left(\begin{array}{r} 3-c_{1} \\ 1-c_{2} \\ -1-c_{3} \end{array}\right) . $$
Then, which of the following is/are TRUE?
$$\widehat w = {1 \over {\sqrt 6 }}\left( {\widehat i + \widehat j + 2\widehat k} \right).$$ Given that there exists a vector $${\overrightarrow v }$$ in $${{R^3}}$$ such that $$\left| {\widehat u \times \overrightarrow v } \right| = 1$$ and $$\widehat w.\left( {\widehat u \times \overrightarrow v } \right) = 1.$$ Which of the following statement(s) is (are) correct?
Subjective
(A)$$\,\,\,$$Two rays $$x + y = \left| a \right|$$ and $$ax - y=1$$ intersects each other in the
$$\,\,\,\,\,\,\,\,\,\,$$first quadrant in interval $$a \in \left( {{a_0},\,\,\infty } \right),$$ the value of $${{a_0}}$$ is
(B)$$\,\,\,$$ Point $$\left( {\alpha ,\beta ,\gamma } \right)$$ lies on the plane $$x+y+z=2.$$
$$\,\,\,\,\,\,\,\,\,\,\,$$Let $$\overrightarrow a = \alpha \widehat i + \beta \widehat j + \gamma \widehat k,\widehat k \times \left( {\widehat k \times \overrightarrow a } \right) = 0,$$ then $$\gamma = $$
(C)$$\,\,\,$$$$\left| {\int\limits_0^1 {\left( {1 - {y^2}} \right)dy} } \right| + \left| {\int\limits_1^0 {\left( {{y^2} - 1} \right)dy} } \right|$$
(D)$$\,\,\,$$If $$\sin A\,\,\sin B\,\,\sin C + \cos A\,\,\cos B = 1,$$ then the value of $$\sin C = $$
(p)$$\,\,\,$$ $$2$$
(q)$$\,\,\,$$ $${4 \over 3}$$
(r)$$\,\,\,$$ $$\left| {\int\limits_0^1 {\sqrt {1 - xdx} } } \right| + \left| {\int\limits_{ - 1}^0 {\sqrt {1 + xdx} } } \right|$$
(s)$$\,\,\,$$ $$1$$
$$\,\overrightarrow a \times \overrightarrow c = \overrightarrow b \times \overrightarrow d $$ and $$\overrightarrow a \times \overrightarrow b = \overrightarrow c \times \overrightarrow d \,.$$ Prove that
$$\left( {\overrightarrow a - \overrightarrow d } \right).\left( {\overrightarrow b - \overrightarrow c } \right) \ne 0\,\,i.e.\,\,\,\overrightarrow a .\overrightarrow b + \overrightarrow d .\overrightarrow c \ne \overrightarrow d .\overrightarrow b + \overrightarrow a .\overrightarrow c $$
$$\,{\overrightarrow v _1}.{\overrightarrow v _1} = 4,\,{\overrightarrow v _1}.{\overrightarrow v _2} = - 2,\,{\overrightarrow v _1}.{\overrightarrow v _3} = 6,\,\,{\overrightarrow v _2}.{\overrightarrow v _2}$$
$$ = 2,\,{\overrightarrow v _2}.{\overrightarrow v _3} = - 5,\,{\overrightarrow v _3}.{\overrightarrow v _3} = 29$$
where $${f_1},{f_2},{g_1},{g_2}$$ are continuous functions. If $$\overrightarrow A \left( t \right)$$ and $$\overrightarrow B \left( t \right)$$ are nonzero vectors for all $$t$$ and $$\overrightarrow A \left( 0 \right) = 2\widehat i + 3\widehat j,$$ $$\,\overrightarrow A \left( 1 \right) = 6\widehat i + 2\widehat j,$$ $$\,\overrightarrow B \left( 0 \right) = 3\widehat i + 2\widehat j$$ and $$\,\overrightarrow B \left( 1 \right) = 2\widehat i + 6\widehat j.$$ Then show that $$\,\overrightarrow A \left( t \right)$$ and $$\,\overrightarrow B \left( t \right)$$ are parallel for some $$t.$$
(a) $${\left( {u\,.\,v} \right)^2} + {\left| {u \times v} \right|^2} = {\left| u \right|^2}{\left| v \right|^2}$$ and
(b) $$\left( {1 + {{\left| u \right|}^2}} \right)\left( {1 + {{\left| v \right|}^2}} \right) = {\left( {1 - u.v} \right)^2} + {\left| {u + v + \left( {u \times v} \right)} \right|^2}.$$
$$\left[ {\left( {A + B} \right) \times \left( {A + C} \right)} \right] \times \left( {B \times C} \right)\left( {B + C} \right) = 0\,\,.$$
$$\left( {\overrightarrow a \times \overrightarrow b } \right) \times \left( {\overrightarrow c \times \overrightarrow d } \right) + \left( {\overrightarrow a \times \overrightarrow c } \right) \times \left( {\overrightarrow d \times \overrightarrow b } \right) + \left( {\overrightarrow a \times \overrightarrow d } \right) \times \left( {\overrightarrow b \times \overrightarrow c } \right)$$ is parallel to $$\overrightarrow a .$$
$$cx\widehat i - 6\widehat j - 3\widehat k$$ and $$x\widehat i + 2\widehat j + 2cx\widehat k$$ make an obtuse angle with each other.
$$\left| {\overrightarrow {AB} \times \overrightarrow {CD} + \overrightarrow {BC} \times \overrightarrow {AD} + \overrightarrow {CA} \times \overrightarrow {BD} } \right| = 4$$ (area of triangle $$ABC$$)
respectively. If the points $$A, B, C$$ and $$D$$ lie on a plane, find the value of $$\lambda .$$
$$\sum\limits_{i = 1}^{n - 1} {\left( {\overrightarrow {O{A_i}} \times {{\overrightarrow {OA} }_{i + 1}}} \right) = \left( {1 - n} \right)\left( {{{\overrightarrow {OA} }_2} \times {{\overrightarrow {OA} }_1}} \right)} $$
$$\left( {\overrightarrow i + \overrightarrow j + 3\overrightarrow k } \right)x + \left( {3\overrightarrow i - 3\overrightarrow j + \overrightarrow k } \right)y + \left( { - 4\overrightarrow i + 5\overrightarrow j } \right)z$$
$$ = \lambda \left( {x\overrightarrow i \times \overrightarrow j \,\,y + \overrightarrow k \,z} \right)$$ where $$\overrightarrow i ,\,\,\overrightarrow j ,\,\,\overrightarrow k $$ are unit vectors along the coordinate axes.
Fill in the Blanks
$$\left( {a \ne b \ne c \ne 1} \right)$$ are coplannar, then the value of $${1 \over {\left( {1 - a} \right)}} + {1 \over {\left( {1 - b} \right)}} + {1 \over {\left( {1 - c} \right)}} = ..........$$
$${{\overrightarrow A .\overrightarrow B \times \overrightarrow C } \over {\overrightarrow C \times \overrightarrow A .\overrightarrow B }} + {{\overrightarrow B .\overrightarrow A \times \overrightarrow C } \over {\overrightarrow C .\overrightarrow A \times \overrightarrow B }} = $$ ................
The point $$D,$$ then, is the ................ of the triangle $$ABC.$$
True or False
$$\left( {\overrightarrow a - \overrightarrow b } \right)\,.\,\left( {\overrightarrow b - \overrightarrow c } \right)\, \times \,\left( {\overrightarrow c - \overrightarrow a } \right)\, = \,2\overrightarrow {a\,} .\,\overrightarrow {b\,} \times \,\overrightarrow c .$$