1
IIT-JEE 2012 Paper 1 Offline
MCQ (Single Correct Answer)
+4
-1
The integral $\int \frac{\sec ^2 x}{(\sec x+\tan x)^{9 / 2}} d x$ equals (for some arbitrary constant $$K$$)
A
$-\frac{1}{(\sec x+\tan x)^{11 / 2}}\left\{\frac{1}{11}-\frac{1}{7}(\sec x+\tan x)^2\right\}+K$
B
$\frac{1}{(\sec x+\tan x)^{11 / 2}}\left\{\frac{1}{11}-\frac{1}{7}(\sec x+\tan x)^2\right\}+K$
C
$-\frac{1}{(\sec x+\tan x)^{11 / 2}}\left\{\frac{1}{11}+\frac{1}{7}(\sec x+\tan x)^2\right\}+K$
D
$\frac{1}{(\sec x+\tan x)^{11 / 2}}\left\{\frac{1}{11}+\frac{1}{7}(\sec x+\tan x)^2\right\}+K$
2
IIT-JEE 2008 Paper 2 Offline
MCQ (Single Correct Answer)
+3
-1
Let $$I = \int {{{{e^x}} \over {{e^{4x}} + {e^{2x}} + 1}}dx,\,\,J = \int {{{{e^{ - x}}} \over {{e^{ - 4x}} + {e^{ - 2x}} + 1}}dx.} } $$ Then

for an arbitrary constant $$C$$, the value of $$J -I$$ equals :
A
$${1 \over 2}\log \left( {{{{e^{4x}} - {e^{2x}} + 1} \over {{e^{4x}} + {e^{2x}} + 1}}} \right) + C$$
B
$${1 \over 2}\log \left( {{{{e^{2x}} + {e^x} + 1} \over {{e^{2x}} - {e^x} + 1}}} \right) + C$$
C
$${1 \over 2}\log \left( {{{{e^{2x}} - {e^x} + 1} \over {{e^{2x}} + {e^x} + 1}}} \right) + C$$
D
$${1 \over 2}\log \left( {{{{e^{4x}} + {e^{2x}} + 1} \over {{e^{4x}} - {e^{2x}} + 1}}} \right) + C$$
3
IIT-JEE 2007
MCQ (Single Correct Answer)
+3
-0.75
Let $$F(x)$$ be an indefinite integral of $$si{n^2}x.$$

STATEMENT-1: The function $$F(x)$$ satisfies $$F\left( {x + \pi } \right) = F\left( x \right)$$
for all real $$x$$. because

STATEMENT-2: $${\sin ^2}\left( {x + \pi } \right) = {\sin ^2}x$$ for all real $$x$$.

A
Statement-1 is True, Statement-2 is True; Statement-2 is is a correct explanation for Statement-1.
B
Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1.
C
Statement- 1 is True, Statement-2 is False.
D
Statement-1 is False, Statement-2 is True.
4
IIT-JEE 2006
MCQ (Single Correct Answer)
+3
-0.75
$$\int {{{{x^2} - 1} \over {{x^3}\sqrt {2{x^4} - 2{x^2} + 1} }}dx = } $$
A
$${{\sqrt {2{x^4} - 2{x^2} + 1} } \over {{x^2}}} + c$$
B
$${{\sqrt {2{x^4} - 2{x^2} + 1} } \over {{x^3}}} + c$$
C
$${{\sqrt {2{x^4} - 2{x^2} + 1} } \over {{x}}} + c$$
D
$${{\sqrt {2{x^4} - 2{x^2} + 1} } \over {{2x^2}}} + c$$
JEE Advanced Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12