1
JEE Advanced 2023 Paper 1 Online
MCQ (Single Correct Answer)
+3
-1
Let $f:(0,1) \rightarrow \mathbb{R}$ be the function defined as $f(x)=\sqrt{n}$ if $x \in\left[\frac{1}{n+1}, \frac{1}{n}\right)$ where $n \in \mathbb{N}$. Let $g:(0,1) \rightarrow \mathbb{R}$ be a function such that $\int\limits_{x^2}^x \sqrt{\frac{1-t}{t}} d t < g(x) < 2 \sqrt{x}$ for all $x \in(0,1)$.
Then $\lim\limits_{x \rightarrow 0} f(x) g(x)$
2
JEE Advanced 2021 Paper 2 Online
MCQ (Single Correct Answer)
+3
-1
Let $${\psi _1}:[0,\infty ) \to R$$, $${\psi _2}:[0,\infty ) \to R$$, f : (0, $$\infty$$) $$\to$$ R and g : [0, $$\infty$$) $$\to$$ R be functions such that f(0) = g(0) = 0,
$${\psi _1}(x) = {e^{ - x}} + x,x \ge 0$$,
$${\psi _2}(x) = {x^2} - 2x - 2{e^{ - x}} + 2,x \ge 0$$,
$$f(x) = \int_{ - x}^x {(|t| - {t^2}){e^{ - {t^2}}}dt,x > 0} $$ and
$$g(x) = \int_0^{{x^2}} {\sqrt t {e^{ - t}}dt,x > 0} $$.
$${\psi _1}(x) = {e^{ - x}} + x,x \ge 0$$,
$${\psi _2}(x) = {x^2} - 2x - 2{e^{ - x}} + 2,x \ge 0$$,
$$f(x) = \int_{ - x}^x {(|t| - {t^2}){e^{ - {t^2}}}dt,x > 0} $$ and
$$g(x) = \int_0^{{x^2}} {\sqrt t {e^{ - t}}dt,x > 0} $$.
Which of the following statements is TRUE?
3
JEE Advanced 2021 Paper 2 Online
MCQ (Single Correct Answer)
+3
-1
Let $${\psi _1}:[0,\infty ) \to R$$, $${\psi _2}:[0,\infty ) \to R$$, f : (0, $$\infty$$) $$\to$$ R and g : [0, $$\infty$$) $$\to$$ R be functions such that f(0) = g(0) = 0,
$${\psi _1}(x) = {e^{ - x}} + x,x \ge 0$$,
$${\psi _2}(x) = {x^2} - 2x - 2{e^{ - x}} + 2,x \ge 0$$,
$$f(x) = \int_{ - x}^x {(|t| - {t^2}){e^{ - {t^2}}}dt,x > 0} $$ and
$$g(x) = \int_0^{{x^2}} {\sqrt t {e^{ - t}}dt,x > 0} $$.
$${\psi _1}(x) = {e^{ - x}} + x,x \ge 0$$,
$${\psi _2}(x) = {x^2} - 2x - 2{e^{ - x}} + 2,x \ge 0$$,
$$f(x) = \int_{ - x}^x {(|t| - {t^2}){e^{ - {t^2}}}dt,x > 0} $$ and
$$g(x) = \int_0^{{x^2}} {\sqrt t {e^{ - t}}dt,x > 0} $$.
Which of the following statements is TRUE?
4
JEE Advanced 2016 Paper 2 Offline
MCQ (Single Correct Answer)
+3
-1
The value of $$\int\limits_{-{\pi \over 2}}^{{\pi \over 2}} {{{{x^2}\cos x} \over {1 + {e^x}}}dx} $$ is equal to
Questions Asked from Definite Integration (MCQ (Single Correct Answer))
Number in Brackets after Paper Indicates No. of Questions
JEE Advanced 2023 Paper 1 Online (1)
JEE Advanced 2021 Paper 2 Online (2)
JEE Advanced 2016 Paper 2 Offline (1)
JEE Advanced 2015 Paper 2 Offline (1)
JEE Advanced 2014 Paper 2 Offline (4)
JEE Advanced 2013 Paper 1 Offline (1)
IIT-JEE 2012 Paper 2 Offline (1)
IIT-JEE 2011 Paper 1 Offline (1)
IIT-JEE 2010 Paper 1 Offline (2)
IIT-JEE 2010 Paper 2 Offline (1)
IIT-JEE 2008 Paper 2 Offline (1)
IIT-JEE 2008 Paper 1 Offline (1)
IIT-JEE 2006 (3)
IIT-JEE 2005 Screening (1)
IIT-JEE 2004 Screening (2)
IIT-JEE 2003 Screening (2)
IIT-JEE 2002 Screening (3)
IIT-JEE 2001 Screening (1)
IIT-JEE 2000 Screening (3)
IIT-JEE 1999 (2)
IIT-JEE 1998 (2)
IIT-JEE 1995 Screening (2)
IIT-JEE 1993 (1)
IIT-JEE 1990 (1)
IIT-JEE 1985 (1)
IIT-JEE 1983 (1)
IIT-JEE 1981 (2)
JEE Advanced Subjects
Physics
Mechanics
Units & Measurements Motion Laws of Motion Work Power & Energy Impulse & Momentum Rotational Motion Properties of Matter Heat and Thermodynamics Simple Harmonic Motion Waves Gravitation
Electricity
Electrostatics Current Electricity Capacitor Magnetism Electromagnetic Induction Alternating Current Electromagnetic Waves
Optics
Modern Physics
Chemistry
Physical Chemistry
Some Basic Concepts of Chemistry Structure of Atom Redox Reactions Gaseous State Chemical Equilibrium Ionic Equilibrium Solutions Thermodynamics Chemical Kinetics and Nuclear Chemistry Electrochemistry Solid State Surface Chemistry
Inorganic Chemistry
Periodic Table & Periodicity Chemical Bonding & Molecular Structure Isolation of Elements Hydrogen s-Block Elements p-Block Elements d and f Block Elements Coordination Compounds Salt Analysis
Organic Chemistry
Mathematics
Algebra
Quadratic Equation and Inequalities Sequences and Series Mathematical Induction and Binomial Theorem Matrices and Determinants Permutations and Combinations Probability Vector Algebra 3D Geometry Statistics Complex Numbers
Trigonometry
Coordinate Geometry
Calculus