1
JEE Advanced 2023 Paper 1 Online
MCQ (Single Correct Answer)
+3
-1
Change Language
Let $f:(0,1) \rightarrow \mathbb{R}$ be the function defined as $f(x)=\sqrt{n}$ if $x \in\left[\frac{1}{n+1}, \frac{1}{n}\right)$ where $n \in \mathbb{N}$. Let $g:(0,1) \rightarrow \mathbb{R}$ be a function such that $\int\limits_{x^2}^x \sqrt{\frac{1-t}{t}} d t < g(x) < 2 \sqrt{x}$ for all $x \in(0,1)$. Then $\lim\limits_{x \rightarrow 0} f(x) g(x)$
A
does NOT exist
B
is equal to 1
C
is equal to 2
D
is equal to 3
2
JEE Advanced 2021 Paper 2 Online
MCQ (Single Correct Answer)
+3
-1
Change Language
Let $${\psi _1}:[0,\infty ) \to R$$, $${\psi _2}:[0,\infty ) \to R$$, f : (0, $$\infty$$) $$\to$$ R and g : [0, $$\infty$$) $$\to$$ R be functions such that f(0) = g(0) = 0,

$${\psi _1}(x) = {e^{ - x}} + x,x \ge 0$$,

$${\psi _2}(x) = {x^2} - 2x - 2{e^{ - x}} + 2,x \ge 0$$,

$$f(x) = \int_{ - x}^x {(|t| - {t^2}){e^{ - {t^2}}}dt,x > 0} $$ and

$$g(x) = \int_0^{{x^2}} {\sqrt t {e^{ - t}}dt,x > 0} $$.
Which of the following statements is TRUE?
A
$$f(\sqrt {\ln 3} ) + g(\sqrt {\ln 3} ) = {1 \over 3}$$
B
For every x > 1, there exists an $$\alpha$$ $$\in$$ (1, x) such that $${\psi _1}(x) = 1 + \alpha x$$
C
For every x > 0, there exists a $$\beta$$ $$\in$$ (0, x) such that $${\psi _2}(x) = 2x({\psi _1}(\beta ) - 1)$$
D
f is an increasing function on the interval $$\left[ {0,{3 \over 2}} \right]$$
3
JEE Advanced 2021 Paper 2 Online
MCQ (Single Correct Answer)
+3
-1
Change Language
Let $${\psi _1}:[0,\infty ) \to R$$, $${\psi _2}:[0,\infty ) \to R$$, f : (0, $$\infty$$) $$\to$$ R and g : [0, $$\infty$$) $$\to$$ R be functions such that f(0) = g(0) = 0,

$${\psi _1}(x) = {e^{ - x}} + x,x \ge 0$$,

$${\psi _2}(x) = {x^2} - 2x - 2{e^{ - x}} + 2,x \ge 0$$,

$$f(x) = \int_{ - x}^x {(|t| - {t^2}){e^{ - {t^2}}}dt,x > 0} $$ and

$$g(x) = \int_0^{{x^2}} {\sqrt t {e^{ - t}}dt,x > 0} $$.
Which of the following statements is TRUE?
A
$${\psi _1}(x) \le 1$$, for all x > 0
B
$${\psi _2}(x) \le 0$$, for all x > 0
C
$$f(x) \ge 1 - {e^{ - {x^2}}} - {2 \over 3}{x^3} + {2 \over 5}{x^5}$$, for all $$x \in \left( {0,{1 \over 2}} \right)$$
D
$$g(x) \le {2 \over 3}{x^3} - {2 \over 5}{x^5} + {1 \over 7}{x^7}$$, for all $$x \in \left( {0,{1 \over 2}} \right)$$
4
JEE Advanced 2016 Paper 2 Offline
MCQ (Single Correct Answer)
+3
-1
Change Language
The value of $$\int\limits_{-{\pi \over 2}}^{{\pi \over 2}} {{{{x^2}\cos x} \over {1 + {e^x}}}dx} $$ is equal to
A
$${{{\pi ^2}} \over 4} - 2$$
B
$${{{\pi ^2}} \over 4} + 2$$
C
$${\pi ^2} - {e^{{\pi \over 2}}}$$
D
$${\pi ^2} + {e^{{\pi \over 2}}}$$
JEE Advanced Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12