1
JEE Advanced 2023 Paper 2 Online
MCQ (More than One Correct Answer)
+4
-2
Change Language
Let $S$ be the set of all twice differentiable functions $f$ from $\mathbb{R}$ to $\mathbb{R}$ such that $\frac{d^2 f}{d x^2}(x)>0$ for all $x \in(-1,1)$. For $f \in S$, let $X_f$ be the number of points $x \in(-1,1)$ for which $f(x)=x$. Then which of the following statements is(are) true?
A
There exists a function $f \in S$ such that $X_f=0$
B
For every function $f \in S$, we have $X_f \leq 2$
C
There exists a function $f \in S$ such that $X_f=2$
D
There does NOT exist any function $f$ in $S$ such that $X_f=1$
2
JEE Advanced 2016 Paper 1 Offline
MCQ (More than One Correct Answer)
+4
-2
Change Language
Let $$f:\mathbb{R} \to \mathbb{R},\,g:\mathbb{R} \to \mathbb{R}$$ and $$h:\mathbb{R} \to \mathbb{R}$$ be differentiable functions such that $$f\left( x \right)= {x^3} + 3x + 2,$$ $$g\left( {f\left( x \right)} \right) = x$$ and $$h\left( {g\left( {g\left( x \right)} \right)} \right) = x$$ for all $$x \in R$$. Then
A
$$g'\left( 2 \right) = {1 \over {15}}$$
B
$$h'\left( 1 \right) = 666$$
C
$$h\left( 0 \right) = 16$$
D
$$h\left( {g\left( 3 \right)} \right) = 36$$
3
JEE Advanced 2015 Paper 2 Offline
MCQ (More than One Correct Answer)
+4
-1
Let $$F:R \to R$$ be a thrice differentiable function. Suppose that
$$F\left( 1 \right) = 0,F\left( 3 \right) = - 4$$ and $$F'\left( x \right) < 0$$ for all $$x \in \left( {{1 \over 2},3} \right).$$ Let $$f\left( x \right) = xF\left( x \right)$$ for all $$x \in R.$$

The correct statement(s) is (are)

A
$$f'\left( 1 \right) < 0$$
B
$$f\left( 2 \right) < 0$$
C
$$f'\left( x \right) \ne 0$$ for any $$x \in \left( {1,3} \right)$$
D
$$f'\left( x \right) = 0$$ for some $$x \in \left( {1,3} \right)$$
JEE Advanced Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12