1
JEE Advanced 2025 Paper 1 Online
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $\vec{w} = \hat{i} + \hat{j} - 2\hat{k}$, and $\vec{u}$ and $\vec{v}$ be two vectors, such that $\vec{u} \times \vec{v} = \vec{w}$ and $\vec{v} \times \vec{w} = \vec{u}$. Let $\alpha, \beta, \gamma$, and $t$ be real numbers such that

$\vec{u} = \alpha \hat{i} + \beta \hat{j} + \gamma \hat{k},\ \ \ - t \alpha + \beta + \gamma = 0,\ \ \ \alpha - t \beta + \gamma = 0,\ \ \ \alpha + \beta - t \gamma = 0.$

Match each entry in List-I to the correct entry in List-II and choose the correct option.

List – I List – II
(P) $\lvert \vec{v} \rvert^2$ is equal to (1) 0
(Q) If $\alpha = \sqrt{3}$, then $\gamma^2$ is equal to (2) 1
(R) If $\alpha = \sqrt{3}$, then $(\beta + \gamma)^2$ is equal to (3) 2
(S) If $\alpha = \sqrt{2}$, then $t + 3$ is equal to (4) 3
(5) 5
A

(P) $\to$ (2)   (Q) $\to$ (1)   (R) $\to$ (4)   (S) $\to$ (5)

B

(P) $\to$ (2)   (Q) $\to$ (4)   (R) $\to$ (3)   (S) $\to$ (5)

C

(P) $\to$ (2)   (Q) $\to$ (1)   (R) $\to$ (4)   (S) $\to$ (3)

D

(P) $\to$ (5)   (Q) $\to$ (4)   (R) $\to$ (1)   (S) $\to$ (3)

2
JEE Advanced 2023 Paper 2 Online
MCQ (Single Correct Answer)
+3
-1
Change Language
Let the position vectors of the points $P, Q, R$ and $S$ be $\vec{a}=\hat{i}+2 \hat{j}-5 \hat{k}, \vec{b}=3 \hat{i}+6 \hat{j}+3 \hat{k}$, $\vec{c}=\frac{17}{5} \hat{i}+\frac{16}{5} \hat{j}+7 \hat{k}$ and $\vec{d}=2 \hat{i}+\hat{j}+\hat{k}$, respectively. Then which of the following statements is true?
A
The points $P, Q, R$ and $S$ are NOT coplanar
B
$\frac{\vec{b}+2 \vec{d}}{3}$ is the position vector of a point which divides $P R$ internally in the ratio $5: 4$
C
$\frac{\vec{b}+2 \vec{d}}{3}$ is the position vector of a point which divides $P R$ externally in the ratio $5: 4$
D
The square of the magnitude of the vector $\vec{b} \times \vec{d}$ is 95
3
JEE Advanced 2017 Paper 2 Offline
MCQ (Single Correct Answer)
+3
-1
Change Language
Let O be the origin and let PQR be an arbitrary triangle. The point S is such that

$$\overrightarrow{OP}$$ . $$\overrightarrow{OQ}$$ + $$\overrightarrow{OR}$$ . $$\overrightarrow{OS}$$ = $$\overrightarrow{OR}$$ . $$\overrightarrow{OP}$$ + $$\overrightarrow{OQ}$$ . $$\overrightarrow{OS}$$ = $$\overrightarrow{OQ}$$ . $$\overrightarrow{OR}$$ + $$\overrightarrow{OP}$$ . $$\overrightarrow{OS}$$

Then the triangle PQR has S as its
A
centroid
B
orthocentre
C
incentre
D
circumcentre
4
JEE Advanced 2017 Paper 2 Offline
MCQ (Single Correct Answer)
+3
-0
Change Language
Let O be the origin and $$\overrightarrow{OX}$$, $$\overrightarrow{OY}$$, $$\overrightarrow{OZ}$$ be three unit vectors in the directions of the sides $$\overrightarrow{QR}$$, $$\overrightarrow{RP}$$, $$\overrightarrow{PQ}$$ respectively, of a triangle PQR.
|$$\overrightarrow{OX}$$ $$ \times $$ $$\overrightarrow{OY}$$| = ?
A
sin(P + Q)
B
sin(P + R)
C
sin(Q + R)
D
sin2R
JEE Advanced Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12