1
JEE Advanced 2024 Paper 2 Online
Numerical
+3
-0
Change Language

Let $f:\left[0, \frac{\pi}{2}\right] \rightarrow[0,1]$ be the function defined by $f(x)=\sin ^2 x$ and let $g:\left[0, \frac{\pi}{2}\right] \rightarrow[0, \infty)$ be the function defined by $g(x)=\sqrt{\frac{\pi x}{2}-x^2}$.

The value of $2 \int\limits_0^{\frac{\pi}{2}} f(x) g(x) d x-\int\limits_0^{\frac{\pi}{2}} g(x) d x$ is ____________.
Your input ____
2
JEE Advanced 2024 Paper 2 Online
Numerical
+3
-0
Change Language

Let $f:\left[0, \frac{\pi}{2}\right] \rightarrow[0,1]$ be the function defined by $f(x)=\sin ^2 x$ and let $g:\left[0, \frac{\pi}{2}\right] \rightarrow[0, \infty)$ be the function defined by $g(x)=\sqrt{\frac{\pi x}{2}-x^2}$.

The value of $\frac{16}{\pi^3} \int\limits_0^{\frac{\pi}{2}} f(x) g(x) d x$ is ______.
Your input ____
3
JEE Advanced 2023 Paper 2 Online
Numerical
+4
-0
Change Language
For $x \in \mathbb{R}$, let $\tan ^{-1}(x) \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. Then the minimum value of the function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=\int\limits_0^{x \tan ^{-1} x} \frac{e^{(t-\cos t)}}{1+t^{2023}} d t$ is :
Your input ____
4
JEE Advanced 2022 Paper 2 Online
Numerical
+3
-1
Change Language
The greatest integer less than or equal to

$$ \int_{1}^{2} \log _{2}\left(x^{3}+1\right) d x+\int_{1}^{\log _{2} 9}\left(2^{x}-1\right)^{\frac{1}{3}} d x $$

is ___________.
Your input ____
JEE Advanced Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12