1
IIT-JEE 1997
Subjective
+5
-0
Let $$0 < {A_i} < n$$ for $$i = 1,\,2....,\,n.$$ Use mathematical induction to prove that $$$\sin {A_1} + \sin {A_2}....... + \sin {A_n} \le n\,\sin \,\,\left( {{{{A_1} + {A_2} + ...... + {A_n}} \over n}} \right)$$$

where $$ \ge 1$$ is a natural number. {You may use the fact that $$p\sin x + \left( {1 - p} \right)\sin y \le \sin \left[ {px + \left( {1 - p} \right)y} \right],$$ where $$0 \le p \le 1$$ and $$0 \le x,y \le \pi .$$}

2
IIT-JEE 1996
Subjective
+3
-0
Using mathematical induction prove that for every integer $$n \ge 1,\,\,\left( {{3^{2n}} - 1} \right)$$ is divisible by $${2^{n + 2}}$$ but not by $${2^{n + 3}}$$.
3
IIT-JEE 1994
Subjective
+4
-0
If $$x$$ is not an integral multiple of $$2\pi $$ use mathematical induction to prove that : $$$\cos x + \cos 2x + .......... + \cos nx = \cos {{n + 1} \over 2}x\sin {{nx} \over 2}\cos ec{x \over 2}$$$
4
IIT-JEE 1994
Subjective
+5
-0
Let $$n$$ be a positive integer and $${\left( {1 + x + {x^2}} \right)^n} = {a_0} + {a_1}x + ............ + {a_{2n}}{x^{2n}}$$
Show that $$a_0^2 - a_1^2 + a_2^2...... + {a_{2n}}{}^2 = {a_n}$$
JEE Advanced Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12