1
IIT-JEE 1987
Subjective
+3
-0
Prove by mathematical induction that $$ - 5 - {{\left( {2n} \right)!} \over {{2^{2n}}{{\left( {n!} \right)}^2}}} \le {1 \over {{{\left( {3n + 1} \right)}^{1/2}}}}$$ for all positive integers $$n$$.
2
IIT-JEE 1985
Subjective
+5
-0
Use method of mathematical induction $${2.7^n} + {3.5^n} - 5$$ is divisible by $$24$$ for all $$n > 0$$
3
IIT-JEE 1984
Subjective
+4
-0
If $$p$$ be a natural number then prove that $${p^{n + 1}} + {\left( {p + 1} \right)^{2n - 1}}$$ is divisible by $${p^2} + p + 1$$ for every positive integer $$n$$.
4
IIT-JEE 1984
Subjective
+4
-0
Given $${s_n} = 1 + q + {q^2} + ...... + {q^2};$$
$${S_n} = 1 + {{q + 1} \over 2} + {\left( {{{q + 1} \over 2}} \right)^2} + ........ + {\left( {{{q + 1} \over 2}} \right)^n}\,\,\,,q \ne 1$$
Prove that $${}^{n + 1}{C_1} + {}^{n + 1}{C_2}{s_1} + {}^{n + 1}{C_3}{s_2} + ..... + {}^{n + 1}{C_n}{s_n} = {2^n}{S_n}$$
JEE Advanced Subjects
EXAM MAP
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
CBSE
Class 12