1
JEE Advanced 2024 Paper 1 Online
MCQ (Single Correct Answer)
+3
-1
Change Language

Let $\gamma \in \mathbb{R}$ be such that the lines $L_1: \frac{x+11}{1}=\frac{y+21}{2}=\frac{z+29}{3}$ and $L_2: \frac{x+16}{3}=\frac{y+11}{2}=\frac{z+4}{\gamma}$ intersect. Let $R_1$ be the point of intersection of $L_1$ and $L_2$. Let $O=(0,0,0)$, and $\hat{n}$ denote a unit normal vector to the plane containing both the lines $L_1$ and $L_2$.

Match each entry in List-I to the correct entry in List-II.

List-I List-II
(P) $\gamma$ equals (1) $-\hat{i} - \hat{j} + \hat{k}$
(Q) A possible choice for $\hat{n}$ is (2) $\sqrt{\frac{3}{2}}$
(R) $\overrightarrow{OR_1}$ equals (3) $1$
(S) A possible value of $\overrightarrow{OR_1} \cdot \hat{n}$ is (4) $\frac{1}{\sqrt{6}} \hat{i} - \frac{2}{\sqrt{6}} \hat{j} + \frac{1}{\sqrt{6}} \hat{k}$
(5) $\sqrt{\frac{2}{3}}$

The correct option is :
A
$(\mathrm{P}) \rightarrow(3) \quad(\mathrm{Q}) \rightarrow(4) \quad(\mathrm{R}) \rightarrow(1) \quad(\mathrm{S}) \rightarrow(2)$
B
$(\mathrm{P}) \rightarrow(5) \quad(\mathrm{Q}) \rightarrow(4) \quad(\mathrm{R}) \rightarrow(1) \quad(\mathrm{S}) \rightarrow(2)$
C
$(\mathrm{P}) \rightarrow(3) \quad$ (Q) $\rightarrow(4) \quad(\mathrm{R}) \rightarrow(1) \quad$ (S) $\rightarrow(5)$
D
$(\mathrm{P}) \rightarrow(3) \quad(\mathrm{Q}) \rightarrow(1) \quad(\mathrm{R}) \rightarrow(4) \quad$ (S) $\rightarrow(5)$
2
JEE Advanced 2023 Paper 1 Online
MCQ (Single Correct Answer)
+3
-1
Change Language
Let $\ell_1$ and $\ell_2$ be the lines $\vec{r}_1=\lambda(\hat{i}+\hat{j}+\hat{k})$ and $\vec{r}_2=(\hat{j}-\hat{k})+\mu(\hat{i}+\hat{k})$, respectively. Let $X$ be the set of all the planes $H$ that contain the line $\ell_1$. For a plane $H$, let $d(H)$ denote the smallest possible distance between the points of $\ell_2$ and $H$. Let $H_0$ be a plane in $X$ for which $d\left(H_0\right)$ is the maximum value of $d(H)$ as $H$ varies over all planes in $X$.

Match each entry in List-I to the correct entries in List-II.

List - I List - II
(P) The value of $d\left(H_0\right)$ is (1) $\sqrt{3}$
(Q) The distance of the point $(0,1,2)$ from $H_0$ is (2) $\frac{1}{\sqrt{3}}$
(R) The distance of origin from $H_0$ is (3) 0
(S) The distance of origin from the point of intersection of planes $y=z, x=1$ and $H_0$ is (4) $\sqrt{2}$
(5) $\frac{1}{\sqrt{2}}$

The correct option is:
A
$$ (P) \rightarrow(2) \quad(Q) \rightarrow(4) \quad(R) \rightarrow(5) \quad(S) \rightarrow(1) $$
B
$$ (P) \rightarrow(5) \quad(Q) \rightarrow(4) \quad(R) \rightarrow(3) \quad(S) \rightarrow(1) $$
C
$$ (P) \rightarrow(2) \quad(Q) \rightarrow(1) \quad(R) \rightarrow(3) \quad(S) \rightarrow(2) $$
D
$$ (P) \rightarrow(5) \quad(Q) \rightarrow(1) \quad(R) \rightarrow(4) \quad(S) \rightarrow(2) $$
3
JEE Advanced 2017 Paper 2 Offline
MCQ (Single Correct Answer)
+3
-1
Change Language
The equation of the plane passing through the point (1, 1, 1) and perpendicular to the planes 2x + y $$-$$ 2z = 5 and 3x $$-$$ 6y $$-$$ 2z = 7 is
A
14x + 2y $$-$$ 15z = 1
B
$$-$$14x + 2y + 15z = 3
C
14x $$-$$ 2y + 15z = 27
D
14x + 2y + 15z = 31
4
JEE Advanced 2016 Paper 2 Offline
MCQ (Single Correct Answer)
+3
-1
Change Language
Let $$P$$ be the image of the point $$(3,1,7)$$ with respect to the plane $$x-y+z=3.$$ Then the equation of the plane passing through $$P$$ and containing the straight line $${x \over 1} = {y \over 2} = {z \over 1}$$ is
A
$$x+y-3z=0$$
B
$$3x+z=0$$
C
$$x-4y+7z=0$$
D
$$2x-y=0$$
JEE Advanced Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12