1
JEE Advanced 2022 Paper 1 Online
MCQ (More than One Correct Answer)
+4
-2
Change Language

Consider the equation

$$ \int_{1}^{e} \frac{\left(\log _{\mathrm{e}} x\right)^{1 / 2}}{x\left(a-\left(\log _{\mathrm{e}} x\right)^{3 / 2}\right)^{2}} d x=1, \quad a \in(-\infty, 0) \cup(1, \infty) $$

Which of the following statements is/are TRUE?

A
No $$a$$ satisfies the above equation
B
An integer $$a$$ satisfies the above equation
C
An irrational number $$a$$ satisfies the above equation
D
More than one $$a$$ satisfy the above equation
2
JEE Advanced 2021 Paper 2 Online
MCQ (More than One Correct Answer)
+4
-2
Change Language
Let $$f:\left[ { - {\pi \over 2},{\pi \over 2}} \right] \to R$$ be a continuous function such that $$f(0) = 1$$ and $$\int_0^{{\pi \over 3}} {f(t)dt = 0} $$. Then which of the following statements is(are) TRUE?
A
The equation $$f(x) - 3\cos 3x = 0$$ has at least one solution in $$\left( {0,{\pi \over 3}} \right)$$
B
The equation $$f(x) - 3\sin 3x = - {6 \over \pi }$$ has at least one solution in $$\left( {0,{\pi \over 3}} \right)$$
C
$$\mathop {\lim }\limits_{x \to 0} {{x\int_0^x {f(t)dt} } \over {1 - {e^{{x^2}}}}} = - 1$$
D
$$\mathop {\lim }\limits_{x \to 0} {{\sin x\int_0^x {f(t)dt} } \over {{x^2}}} = - 1$$
3
JEE Advanced 2020 Paper 2 Offline
MCQ (More than One Correct Answer)
+4
-2
Change Language
Let b be a nonzero real number. Suppose f : R $$ \to $$ R is a differentiable function such that f(0) = 1. If the derivative f' of f satisfies the equation $$f'(x) = {{f(x)} \over {{b^2} + {x^2}}}$$

for all x$$ \in $$R, then which of the following statements is/are TRUE?
A
If b > 0, then f is an increasing function
B
If b < 0, then f is a decreasing function
C
f(x) f($$-$$x) = 1 for all x$$ \in $$R
D
f(x) $$-$$f($$-$$x) = 0 for all x$$ \in $$R
4
JEE Advanced 2020 Paper 1 Offline
MCQ (More than One Correct Answer)
+4
-2
Change Language
Which of the following inequalities is/are TRUE?
A
$$\int_0^1 {x\cos xdx\, \ge \,{3 \over 8}} $$
B
$$\int_0^1 {x\sin xdx\, \ge \,{3 \over {10}}} $$
C
$$\int_0^1 {{x^2}\cos xdx\, \ge \,{1 \over 2}} $$
D
$$\int_0^1 {{x^2}\sin xdx\, \ge \,{2 \over 9}} $$
JEE Advanced Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12