1
IIT-JEE 1993
Subjective
+5
-0
Prove that $$\sum\limits_{r = 1}^k {{{\left( { - 3} \right)}^{r - 1}}\,\,{}^{3n}{C_{2r - 1}} = 0,} $$ where $$k = \left( {3n} \right)/2$$ and $$n$$ is an even positive integer.
2
IIT-JEE 1992
Subjective
+6
-0
If $$\sum\limits_{r = 0}^{2n} {{a_r}{{\left( {x - 2} \right)}^r}\,\, = \sum\limits_{r = 0}^{2n} {{b_r}{{\left( {x - 3} \right)}^r}} } $$ and $${a_k} = 1$$ for all $$k \ge n,$$ then show that $${b_n} = {}^{2n + 1}{C_{n + 1}}$$
3
IIT-JEE 1992
Subjective
+6
-0
Let $$p \ge 3$$ be an integer and $$\alpha $$, $$\beta $$ be the roots of $${x^2} - \left( {p + 1} \right)x + 1 = 0$$ using mathematical induction show that $${\alpha ^n} + {\beta ^n}.$$
(i) is an integer and (ii) is not divisible by $$p$$
4
IIT-JEE 1991
Subjective
+4
-0
Using induction or otherwise, prove that for any non-negative integers $$m$$, $$n$$, $$r$$ and $$k$$ ,
$$\sum\limits_{m = 0}^k {\left( {n - m} \right)} {{\left( {r + m} \right)!} \over {m!}} = {{\left( {r + k + 1} \right)!} \over {k!}}\left[ {{n \over {r + 1}} - {k \over {r + 2}}} \right]$$
JEE Advanced Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12