Numerical

1
The value of $2 \int\limits_0^{\frac{\pi}{2}} f(x) g(x) d x-\int\limits_0^{\frac{\pi}{2}} g(x) d x$ is ____________.
JEE Advanced 2024 Paper 2 Online
2
The value of $\frac{16}{\pi^3} \int\limits_0^{\frac{\pi}{2}} f(x) g(x) d x$ is ______.
JEE Advanced 2024 Paper 2 Online
3
For $x \in \mathbb{R}$, let $\tan ^{-1}(x) \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. Then the minimum value of the function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=\int\limits_0^{x \tan ^{-1} x} \frac{e^{(t-\cos t)}}{1+t^{2023}} d t$ is :
JEE Advanced 2023 Paper 2 Online
4
The greatest integer less than or equal to

$$ \int_{1}^{2} \log _{2}\left(x^{3}+1\right) d x+\int_{1}^{\log _{2} 9}\left(2^{x}-1\right)^{\frac{1}{3}} d x $$

is ___________.
JEE Advanced 2022 Paper 2 Online
5
Let $${g_i}:\left[ {{\pi \over 8},{{3\pi } \over 8}} \right] \to R,i = 1,2$$, and $$f:\left[ {{\pi \over 8},{{3\pi } \over 8}} \right] \to R$$ be functions such that $${g_1}(x) = 1,{g_2}(x) = |4x - \pi |$$ and $$f(x) = {\sin ^2}x$$, for all $$x \in \left[ {{\pi \over 8},{{3\pi } \over 8}} \right]$$. Define $${S_i} = \int\limits_{{\pi \over 8}}^{{{3\pi } \over 8}} {f(x).{g_i}(x)dx} $$, i = 1, 2

The value of $${{16{S_1}} \over \pi }$$ is _____________.
JEE Advanced 2021 Paper 2 Online
6
Let $${g_i}:\left[ {{\pi \over 8},{{3\pi } \over 8}} \right] \to R,i = 1,2$$, and $$f:\left[ {{\pi \over 8},{{3\pi } \over 8}} \right] \to R$$ be functions such that $${g_1}(x) = 1,{g_2}(x) = |4x - \pi |$$ and $$f(x) = {\sin ^2}x$$, for all $$x \in \left[ {{\pi \over 8},{{3\pi } \over 8}} \right]$$. Define $${S_i} = \int\limits_{{\pi \over 8}}^{{{3\pi } \over 8}} {f(x).{g_i}(x)dx} $$, i = 1, 2

The value of $${{48{S_2}} \over {{\pi ^2}}}$$ is ___________.
JEE Advanced 2021 Paper 2 Online
7
For any real number x, let [ x ] denote the largest integer less than or equal to x. If $$I = \int\limits_0^{10} {\left[ {\sqrt {{{10x} \over {x + 1}}} } \right]dx} $$, then the value of 9I is __________.
JEE Advanced 2021 Paper 2 Online
8
Let $$f:R \to R$$ be a differentiable function such that its derivative f' is continuous and f($$\pi $$) = $$-$$6.

If $$F:[0,\pi ] \to R$$ is defined by $$F(x) = \int_0^x {f(t)dt} $$, and if $$\int_0^\pi {(f'(x)} + F(x))\cos x\,dx$$ = 2

then the value of f(0) is ...........
JEE Advanced 2020 Paper 2 Offline
9
The value of the integral $$ \int\limits_0^{\pi /2} {{{3\sqrt {\cos \theta } } \over {{{(\sqrt {\cos \theta } + \sqrt {\sin \theta } )}^5}}}} d\theta $$ equals ..............
JEE Advanced 2019 Paper 2 Offline
10
If $$I = {2 \over \pi }\int\limits_{ - \pi /4}^{\pi /4} {{{dx} \over {(1 + {e^{\sin x}})(2 - \cos 2x)}}} $$, then 27I2 equals .................
JEE Advanced 2019 Paper 1 Offline
11
The value of the integral

$$\int_0^{1/2} {{{1 + \sqrt 3 } \over {{{({{(x + 1)}^2}{{(1 - x)}^6})}^{1/4}}}}dx} $$ is ........
JEE Advanced 2018 Paper 2 Offline
12
The total number of distinct $$x \in \left[ {0,1} \right]$$ for which

$$\int\limits_0^x {{{{t^2}} \over {1 + {t^4}}}} dt = 2x - 1$$
JEE Advanced 2016 Paper 1 Offline
13
If $$\alpha = \int\limits_0^1 {\left( {{e^{9x + 3{{\tan }^{ - 1}}x}}} \right)\left( {{{12 + 9{x^2}} \over {1 + {x^2}}}} \right)} dx$$ where $${\tan ^{ - 1}}x$$ takes only principal values, then the value of $$\left( {{{\log }_e}\left| {1 + \alpha } \right| - {{3\pi } \over 4}} \right)$$ is
JEE Advanced 2015 Paper 2 Offline
14
Let $$f:R \to R$$ be a function defined by
$$f\left( x \right) = \left\{ {\matrix{ {\left[ x \right],} & {x \le 2} \cr {0,} & {x > 2} \cr } } \right.$$ where $$\left[ x \right]$$ is the greatest integer less than or equal to $$x$$, if $$I = \int\limits_{ - 1}^2 {{{xf\left( {{x^2}} \right)} \over {2 + f\left( {x + 1} \right)}}dx,} $$ then the value of $$(4I-1)$$ is
JEE Advanced 2015 Paper 1 Offline
15
The value of $$\int\limits_0^1 {4{x^3}\left\{ {{{{d^2}} \over {d{x^2}}}{{\left( {1 - {x^2}} \right)}^5}} \right\}dx} $$ is
JEE Advanced 2014 Paper 1 Offline
16
For any real number $$x,$$ let $$\left[ x \right]$$ denote the largest integer less than or equal to $$x.$$ Let $$f$$ be a real valued function defined on the interval $$\left[ { - 10,10} \right]$$ by $$$f\left( x \right) = \left\{ {\matrix{ {x - \left[ x \right]} & {if\left[ x \right]is\,odd,} \cr {1 + \left[ x \right] - x} & {if\left[ x \right]is\,even} \cr } } \right.$$$

Then the value of $${{{\pi ^2}} \over {10}}\int\limits_{ - 10}^{10} {f\left( x \right)\cos \,\pi x\,dx} $$ is

IIT-JEE 2010 Paper 1 Offline
17

Let $$f:R \to R$$ be a continuous function which satisfies $$f(x) = \int\limits_0^x {f(t)dt} $$. Then, the value of $$f(\ln 5)$$ is ____________.

IIT-JEE 2009 Paper 2 Offline

MCQ (Single Correct Answer)

1
Let $f:(0,1) \rightarrow \mathbb{R}$ be the function defined as $f(x)=\sqrt{n}$ if $x \in\left[\frac{1}{n+1}, \frac{1}{n}\right)$ where $n \in \mathbb{N}$. Let $g:(0,1) \rightarrow \mathbb{R}$ be a function such that $\int\limits_{x^2}^x \sqrt{\frac{1-t}{t}} d t < g(x) < 2 \sqrt{x}$ for all $x \in(0,1)$. Then $\lim\limits_{x \rightarrow 0} f(x) g(x)$
JEE Advanced 2023 Paper 1 Online
2
Which of the following statements is TRUE?
JEE Advanced 2021 Paper 2 Online
3
Which of the following statements is TRUE?
JEE Advanced 2021 Paper 2 Online
4
The value of $$\int\limits_{-{\pi \over 2}}^{{\pi \over 2}} {{{{x^2}\cos x} \over {1 + {e^x}}}dx} $$ is equal to
JEE Advanced 2016 Paper 2 Offline
5
Let $$f'\left( x \right) = {{192{x^3}} \over {2 + {{\sin }^4}\,\pi x}}$$ for all $$x \in R\,\,$$ with $$f\left( {{1 \over 2}} \right) = 0$$.
If $$m \le \int\limits_{1/2}^1 {f\left( x \right)dx \le M,} $$ then the possible values of $$m$$ and $$M$$ are
JEE Advanced 2015 Paper 2 Offline
6
List - $$I$$
P.$$\,\,\,\,$$ The number of polynomials $$f(x)$$ with non-negative integer coefficients of degree $$ \le 2$$, satisfying $$f(0)=0$$ and $$\int_0^1 {f\left( x \right)dx = 1,} $$ is
Q.$$\,\,\,\,$$ The number of points in the interval $$\left[ { - \sqrt {13} ,\sqrt {13} } \right]$$
at which $$f\left( x \right) = \sin \left( {{x^2}} \right) + \cos \left( {{x^2}} \right)$$ attains its maximum value, is
R.$$\,\,\,\,$$ $$\int\limits_{ - 2}^2 {{{3{x^2}} \over {\left( {1 + {e^x}} \right)}}dx} $$ equals
S.$$\,\,\,\,$$ $${{\left( {\int\limits_{ - {1 \over 2}}^{{1 \over 2}} {\cos 2x\log \left( {{{1 + x} \over {1 - x}}} \right)dx} } \right)} \over {\left( {\int\limits_0^{{1 \over 2}} {\cos 2x\log \left( {{{1 + x} \over {1 - x}}} \right)dx} } \right)}}$$

List $$II$$
1.$$\,\,\,\,$$ $$8$$
2.$$\,\,\,\,$$ $$2$$
3.$$\,\,\,\,$$ $$4$$
4.$$\,\,\,\,$$ $$0$$

JEE Advanced 2014 Paper 2 Offline
7
Given that for each $$a \in \left( {0,1} \right),\,\,\,\mathop {\lim }\limits_{h \to {0^ + }} \,\int\limits_h^{1 - h} {{t^{ - a}}{{\left( {1 - t} \right)}^{a - 1}}dt} $$ exists. Let this limit be $$g(a).$$ In addition, it is given that the function $$g(a)$$ is differentiable on $$(0,1).$$

The value of $$g\left( {{1 \over 2}} \right)$$ is

JEE Advanced 2014 Paper 2 Offline
8
Given that for each $$a \in \left( {0,1} \right),\,\,\,\mathop {\lim }\limits_{h \to {0^ + }} \,\int\limits_h^{1 - h} {{t^{ - a}}{{\left( {1 - t} \right)}^{a - 1}}dt} $$ exists. Let this limit be $$g(a).$$ In addition, it is given that the function $$g(a)$$ is differentiable on $$(0,1).$$

The value of $$g'\left( {{1 \over 2}} \right)$$ is

JEE Advanced 2014 Paper 2 Offline
9
The following integral $$\int\limits_{{\pi \over 4}}^{{\pi \over 2}} {{{\left( {2\cos ec\,\,x} \right)}^{17}}dx} $$ is equal to
JEE Advanced 2014 Paper 2 Offline
10
Let $$f$$ $$:\,\,\left[ {{1 \over 2},1} \right] \to R$$ (the set of all real number) be a positive,
non-constant and differentiable function such that
$$f'\left( x \right) < 2f\left( x \right)$$ and $$f\left( {{1 \over 2}} \right) = 1.$$ Then the value of $$\int\limits_{1/2}^1 {f\left( x \right)} \,dx$$ lies in the interval
JEE Advanced 2013 Paper 1 Offline
11
The value of the integral $$\int\limits_{ - \pi /2}^{\pi /2} {\left( {{x^2} + 1n{{\pi + x} \over {\pi - x}}} \right)\cos xdx} $$ is
IIT-JEE 2012 Paper 2 Offline
12
The value of $$\,\int\limits_{\sqrt {\ell n2} }^{\sqrt {\ell n3} } {{{x\sin {x^2}} \over {\sin {x^2} + \sin \left( {\ell n6 - {x^2}} \right)}}\,dx} $$ is
IIT-JEE 2011 Paper 1 Offline
13
The value of $$\int\limits_0^1 {{{{x^4}{{\left( {1 - x} \right)}^4}} \over {1 + {x^2}}}dx} $$ is (are)
IIT-JEE 2010 Paper 1 Offline
14
The value of $$\mathop {\lim }\limits_{x \to 0} {1 \over {{x^3}}}\int\limits_0^x {{{t\ln \left( {1 + t} \right)} \over {{t^4} + 4}}} dt$$ is
IIT-JEE 2010 Paper 1 Offline
15
Let $$f$$ be a real-valued function defined on the interval $$(-1, 1)$$ such that
$${e^{ - x}}f\left( x \right) = 2 + \int\limits_0^x {\sqrt {{t^4} + 1} \,\,dt,} $$ for all $$x \in \left( { - 1,1} \right)$$,
and let $${f^{ - 1}}$$ be the inverse function of $$f$$. Then $$\left( {{f^{ - 1}}} \right)'\left( 2 \right)$$ is equal to
IIT-JEE 2010 Paper 2 Offline
16

Let $$g\left( x \right) = \int\limits_0^{{e^x}} {{{f'\left( t \right)} \over {1 + {t^2}}}} \,dt.$$

Which of the following is true?

IIT-JEE 2008 Paper 2 Offline
17

$$\int\limits_{ - 1}^1 {g'\left( x \right)dx = } $$

IIT-JEE 2008 Paper 1 Offline
18
Let the definite integral be defined by the formula
$$\int\limits_a^b {f\left( x \right)dx = {{b - a} \over 2}\left( {f\left( a \right) + f\left( b \right)} \right).} $$ For more accurate result for
$$c \in \left( {a,b} \right),$$ we can use $$\int\limits_a^b {f\left( x \right)dx = \int\limits_a^c {f\left( x \right)dx + \int\limits_c^b {f\left( x \right)dx = F\left( c \right)} } } $$ so
that for $$c = {{a + b} \over 2},$$ we get $$\int\limits_a^b {f\left( x \right)dx = {{b - a} \over 4}\left( {f\left( a \right) + f\left( b \right) + 2f\left( c \right)} \right).} $$

If $$f''\left( x \right) < 0\,\forall x \in \left( {a,b} \right)$$ and $$c$$ is a point such that $$a < c < b,$$ and
$$\left( {c,f\left( c \right)} \right)$$ is the point lying on the curve for which $$F(c)$$ is
maximum, then $$f'(c)$$ is equal to

IIT-JEE 2006
19
Let the definite integral be defined by the formula
$$\int\limits_a^b {f\left( x \right)dx = {{b - a} \over 2}\left( {f\left( a \right) + f\left( b \right)} \right).} $$ For more accurate result for
$$c \in \left( {a,b} \right),$$ we can use $$\int\limits_a^b {f\left( x \right)dx = \int\limits_a^c {f\left( x \right)dx + \int\limits_c^b {f\left( x \right)dx = F\left( c \right)} } } $$ so
that for $$c = {{a + b} \over 2},$$ we get $$\int\limits_a^b {f\left( x \right)dx = {{b - a} \over 4}\left( {f\left( a \right) + f\left( b \right) + 2f\left( c \right)} \right).} $$

If $$\mathop {\lim }\limits_{x \to a} {{\int\limits_a^x {f\left( x \right)dx - \left( {{{x - a} \over 2}} \right)\left( {f\left( x \right) + f\left( a \right)} \right)} } \over {{{\left( {x - a} \right)}^3}}} = 0,\,\,$$ then $$f(x)$$ is
of maximum degree

IIT-JEE 2006
20
Let the definite integral be defined by the formula
$$\int\limits_a^b {f\left( x \right)dx = {{b - a} \over 2}\left( {f\left( a \right) + f\left( b \right)} \right).} $$ For more accurate result for
$$c \in \left( {a,b} \right),$$ we can use $$\int\limits_a^b {f\left( x \right)dx = \int\limits_a^c {f\left( x \right)dx + \int\limits_c^b {f\left( x \right)dx = F\left( c \right)} } } $$ so
that for $$c = {{a + b} \over 2},$$ we get $$\int\limits_a^b {f\left( x \right)dx = {{b - a} \over 4}\left( {f\left( a \right) + f\left( b \right) + 2f\left( c \right)} \right).} $$

$$\int\limits_0^{\pi /2} {\sin x\,dx = } $$

IIT-JEE 2006
21
$$\int\limits_{ - 2}^0 {\left\{ {{x^3} + 3{x^2} + 3x + 3 + \left( {x + 1} \right)\cos \left( {x + 1} \right)} \right\}\,\,dx} $$ is equal to
IIT-JEE 2005 Screening
22
The value of the integral $$\int\limits_0^1 {\sqrt {{{1 - x} \over {1 + x}}} dx} $$ is
IIT-JEE 2004 Screening
23
If $$f(x)$$ is differentiable and $$\int\limits_0^{{t^2}} {xf\left( x \right)dx = {2 \over 5}{t^5},} $$ then $$f\left( {{4 \over {25}}} \right)$$ equals
IIT-JEE 2004 Screening
24
If $$l\left( {m,n} \right) = \int\limits_0^1 {{t^m}{{\left( {1 + t} \right)}^n}dt,} $$ then the expression for $$l(m, n)$$ in terms of $$l(m+n, n-1)$$ is
IIT-JEE 2003 Screening
25
If $$f\left( x \right) = \int\limits_{{x^2}}^{{x^2} + 1} {{e^{ - {t^2}}}} dt,$$ then $$f(x)$$ increases in
IIT-JEE 2003 Screening
26
Let $$T>0$$ be a fixed real number . Suppose $$f$$ is a continuous
function such that for all $$x \in R$$, $$f\left( {x + T} \right) = f\left( x \right)$$.

If $$I = \int\limits_0^T {f\left( x \right)dx} $$ then the value of $$\int\limits_3^{3 + 3T} {f\left( {2x} \right)dx} $$ is

IIT-JEE 2002 Screening
27
The integral $$\int\limits_{ - 1/2}^{1/2} {\left( {\left[ x \right] + \ell n\left( {{{1 + x} \over {1 - x}}} \right)} \right)dx} $$ equal to
IIT-JEE 2002 Screening
28
Let $$T>0$$ be a fixed real number . Suppose $$f$$ is a continuous
function such that for all $$x \in R$$, $$f\left( {x + T} \right) = f\left( x \right)$$.

If $$I = \int\limits_0^T {f\left( x \right)dx} $$ then the value of $$\int\limits_3^{3 + 3T} {f\left( {2x} \right)dx} $$ is

IIT-JEE 2002 Screening
29
The value of $$\int\limits_{ - \pi }^\pi {{{{{\cos }^2}x} \over {1 + {a^x}}}dx,\,a > 0,} $$ is
IIT-JEE 2001 Screening
30
If $$f\left( x \right) = \left\{ {\matrix{ {{e^{\cos x}}\sin x,} & {for\,\,\left| x \right| \le 2} \cr {2,} & {otherwise,} \cr } } \right.$$ then $$\int\limits_{ - 2}^3 {f\left( x \right)dx = } $$
IIT-JEE 2000 Screening
31
The value of the integral $$\int\limits_{{e^{ - 1}}}^{{e^2}} {\left| {{{{{\log }_e}x} \over x}} \right|dx} $$ is :
IIT-JEE 2000 Screening
32
Let $$g\left( x \right) = \int\limits_0^x {f\left( t \right)dt,} $$ where f is such that
$${1 \over 2} \le f\left( t \right) \le 1,$$ for $$t \in \left[ {0,1} \right]$$ and $$\,0 \le f\left( t \right) \le {1 \over 2},$$ for $$t \in \left[ {1,2} \right]$$.
Then $$g(2)$$ satisfies the inequality
IIT-JEE 2000 Screening
33
$$\int\limits_{\pi /4}^{3\pi /4} {{{dx} \over {1 + \cos x}}} $$ is equal to
IIT-JEE 1999
34
If for a real number $$y$$, $$\left[ y \right]$$ is the greatest integer less than or
equal to $$y$$, then the value of the integral $$\int\limits_{\pi /2}^{3\pi /2} {\left[ {2\sin x} \right]dx} $$ is
IIT-JEE 1999
35
Let $$f\left( x \right) = x - \left[ x \right],$$ for every real number $$x$$, where $$\left[ x \right]$$ is the integral part of $$x$$. Then $$\int_{ - 1}^1 {f\left( x \right)\,dx} $$ is
IIT-JEE 1998
36
If $$\int_0^x {f\left( t \right)dt = x + \int_x^1 {t\,\,f\left( t \right)\,\,dt,} } $$ then the value of $$f(1)$$ is
IIT-JEE 1998
37
The value of $$\int\limits_\pi ^{2\pi } {\left[ {2\,\sin x} \right]\,dx} $$ where [ . ] represents the greatest integer function is
IIT-JEE 1995 Screening
38
If $$f\left( x \right)\,\,\, = \,\,\,A\sin \left( {{{\pi x} \over 2}} \right)\,\,\, + \,\,\,B,\,\,\,f'\left( {{1 \over 2}} \right) = \sqrt 2 $$ and
$$\int\limits_0^1 {f\left( x \right)dx = {{2A} \over \pi },} $$ then constants $$A$$ and $$B$$ are
IIT-JEE 1995 Screening
39
The value of $$\int\limits_0^{\pi /2} {{{dx} \over {1 + {{\tan }^3}\,x}}} $$ is
IIT-JEE 1993
40
Let $$f:R \to R$$ and $$\,\,g:R \to R$$ be continuous functions. Then the value of the integral
$$\int\limits_{ - \pi /2}^{\pi /2} {\left[ {f\left( x \right) + f\left( { - x} \right)} \right]\left[ {g\left( x \right) - g\left( { - x} \right)} \right]dx} $$ is
IIT-JEE 1990
41
For any integer $$n$$ the integral ...........
$$\int\limits_0^\pi {{e^{{{\cos }^2}x}}{{\cos }^3}\left( {2n + 1} \right)xdx} $$ has the value
IIT-JEE 1985
42
The value of the integral $$\int\limits_0^{\pi /2} {{{\sqrt {\cot x} } \over {\sqrt {\cot x} + \sqrt {\tan x} }}dx} $$ is
IIT-JEE 1983
43
The value of the definite integral $$\int\limits_0^1 {\left( {1 + {e^{ - {x^2}}}} \right)} \,\,dx$$
IIT-JEE 1981
44
Let $$a, b, c$$ be non-zero real numbers such that
$$\int\limits_0^1 {\left( {1 + {{\cos }^8}x} \right)\left( {a{x^2} + bx + c} \right)dx = \int\limits_0^2 {\left( {1 + {{\cos }^8}x} \right)\left( {a{x^2} + bx + c} \right)dx.} } $$
Then the quadratic equation $$a{x^2} + bx + c = 0$$ has
IIT-JEE 1981

MCQ (More than One Correct Answer)

1

Consider the equation

$$ \int_{1}^{e} \frac{\left(\log _{\mathrm{e}} x\right)^{1 / 2}}{x\left(a-\left(\log _{\mathrm{e}} x\right)^{3 / 2}\right)^{2}} d x=1, \quad a \in(-\infty, 0) \cup(1, \infty) $$

Which of the following statements is/are TRUE?

JEE Advanced 2022 Paper 1 Online
2
Let $$f:\left[ { - {\pi \over 2},{\pi \over 2}} \right] \to R$$ be a continuous function such that $$f(0) = 1$$ and $$\int_0^{{\pi \over 3}} {f(t)dt = 0} $$. Then which of the following statements is(are) TRUE?
JEE Advanced 2021 Paper 2 Online
3
Let b be a nonzero real number. Suppose f : R $$ \to $$ R is a differentiable function such that f(0) = 1. If the derivative f' of f satisfies the equation $$f'(x) = {{f(x)} \over {{b^2} + {x^2}}}$$

for all x$$ \in $$R, then which of the following statements is/are TRUE?
JEE Advanced 2020 Paper 2 Offline
4
Which of the following inequalities is/are TRUE?
JEE Advanced 2020 Paper 1 Offline
5
If $$I = \sum\nolimits_{k = 1}^{98} {\int_k^{k + 1} {{{k + 1} \over {x(x + 1)}}} dx} $$, then
JEE Advanced 2017 Paper 2 Offline
6
Let
$$f\left( x \right) = \mathop {\lim }\limits_{n \to \infty } {\left( {{{{n^n}\left( {x + n} \right)\left( {x + {n \over 2}} \right)...\left( {x + {n \over n}} \right)} \over {n!\left( {{x^2} + {n^2}} \right)\left( {{x^2} + {{{n^2}} \over 4}} \right)....\left( {{x^2} + {{{n^2}} \over {{n^2}}}} \right)}}} \right)^{{x \over n}}},$$ for

all $$x>0.$$ Then
JEE Advanced 2016 Paper 2 Offline
7
Let $$f\left( x \right) = 7{\tan ^8}x + 7{\tan ^6}x - 3{\tan ^4}x - 3{\tan ^2}x$$ for all $$x \in \left( { - {\pi \over 2},{\pi \over 2}} \right).$$
Then the correct expression(s) is (are)
JEE Advanced 2015 Paper 2 Offline
8
The option(s) with the values of a and $$L$$ that satisfy the following equation is (are) $$${{\int\limits_0^{4\pi } {{e^t}\left( {{{\sin }^6}at + {{\cos }^4}at} \right)dt} } \over {\int\limits_0^\pi {{e^t}\left( {{{\sin }^6}at + {{\cos }^4}at} \right)dt} }} = L?$$$
JEE Advanced 2015 Paper 2 Offline
9
Let $$f:\left( {0,\infty } \right) \to R$$ be given by $$f\left( x \right) $$= $$\int\limits_{{1 \over x}}^x {{{{e^{ - \left( {t + {1 \over t}} \right)}}} \over t}} dt$$. Then
JEE Advanced 2014 Paper 1 Offline
10
Let a $$\in$$ R and f : R $$\to$$ R be given by f(x) = x5 $$-$$ 5x + a. Then,
JEE Advanced 2014 Paper 1 Offline
11

If $${I_n} = \int\limits_{ - \pi }^\pi {{{\sin nx} \over {(1 + {\pi ^x})\sin x}}dx,n = 0,1,2,} $$ .... then

IIT-JEE 2009 Paper 2 Offline

Subjective

1
Match the integrals in Column $$I$$ with the values in Column $$II$$ and indicate your answer by darkening the appropriate bubbles in the $$4 \times 4$$ matrix given in the $$ORS$$.

Column $$I$$
(A) $$\int\limits_{ - 1}^1 {{{dx} \over {1 + {x^2}}}} $$
(B) $$\int\limits_0^1 {{{dx} \over {\sqrt {1 - {x^2}} }}} $$
(C) $$\int\limits_2^3 {{{dx} \over {1 - {x^2}}}} $$
(D) $$\int\limits_1^2 {{{dx} \over {x\sqrt {{x^2} - 1} }}} $$

Column $$II$$
(p) $${1 \over 2}\log \left( {{2 \over 3}} \right)$$
(q) $$2\log \left( {{2 \over 3}} \right)$$
(r) $${{\pi \over 3}}$$
(s) $${{\pi \over 2}}$$

IIT-JEE 2007
2
The value of $$5050{{\int\limits_0^1 {{{\left( {1 - {x^{50}}} \right)}^{100}}} dx} \over {\int\limits_0^1 {{{\left( {1 - {x^{50}}} \right)}^{101}}} dx}}$$ is.
IIT-JEE 2006
3
Evaluate $$\,\int\limits_0^\pi {{e^{\left| {\cos x} \right|}}} \left( {2\sin \left( {{1 \over 2}\cos x} \right) + 3\cos \left( {{1 \over 2}\cos x} \right)} \right)\sin x\,\,dx$$
IIT-JEE 2005
4
If $$y\left( x \right) = \int\limits_{{x^2}/16}^{{x^2}} {{{\cos x\cos \sqrt \theta } \over {1 + {{\sin }^2}\sqrt \theta }}d\theta ,} $$ then find $${{dy} \over {dx}}$$ at $$x = \pi $$
IIT-JEE 2004
5
Find the value of $$\int\limits_{ - \pi /3}^{\pi /3} {{{\pi + 4{x^3}} \over {2 - \cos \left( {\left| x \right| + {\pi \over 3}} \right)}}dx} $$
IIT-JEE 2004
6
If $$f$$ is an even function then prove that
$$\int\limits_0^{\pi /2} {f\left( {\cos 2x} \right)\cos x\,dx = \sqrt 2 } \int\limits_0^{\pi /4} {f\left( {\sin 2x} \right)\cos x\,dx.} $$
IIT-JEE 2003
7
For $$x>0,$$ let $$f\left( x \right) = \int\limits_e^x {{{\ln t} \over {1 + t}}dt.} $$ Find the function
$$f\left( x \right) + f\left( {{1 \over x}} \right)$$ and show that $$f\left( e \right) + f\left( {{1 \over e}} \right) = {1 \over 2}.$$
Here, $$\ln t = {\log _e}t$$.
IIT-JEE 2000
8
Integrate $$\int\limits_0^\pi {{{{e^{\cos x}}} \over {{e^{\cos x}} + {e^{ - \cos x}}}}\,dx.} $$
IIT-JEE 1999
9
Prove that $$\int_0^1 {{{\tan }^{ - 1}}} \,\left( {{1 \over {1 - x + {x^2}}}} \right)dx = 2\int_0^1 {{{\tan }^{ - 1}}} \,x\,dx.$$
Hence or otherwise, evaluate the integral
$$\int_0^1 {{{\tan }^{ - 1}}\left( {1 - x + {x^2}} \right)dx.} $$
IIT-JEE 1998
10
Determine the value of $$\int_\pi ^\pi {{{2x\left( {1 + \sin x} \right)} \over {1 + {{\cos }^2}x}}} \,dx.$$
IIT-JEE 1997
11
Evaluate the definite integral : $$$\int\limits_{ - 1/\sqrt 3 }^{1/\sqrt 3 } {\left( {{{{x^4}} \over {1 - {x^4}}}} \right){{\cos }^{ - 1}}\left( {{{2x} \over {1 + {x^2}}}} \right)} dx$$$
IIT-JEE 1995
12
Let $${I_m} = \int\limits_0^\pi {{{1 - \cos mx} \over {1 - \cos x}}} dx.$$ Use mathematical induction to prove that $${I_m} = m\,\pi ,m = 0,1,2,........$$
IIT-JEE 1995
13
Show that $$\int\limits_0^{n\pi + v} {\left| {\sin x} \right|dx = 2n + 1 - \cos \,v} $$ where $$n$$ is a positive integer and $$\,0 \le v < \pi .$$
IIT-JEE 1994
14
Evaluate $$\int_2^3 {{{2{x^5} + {x^4} - 2{x^3} + 2{x^2} + 1} \over {\left( {{x^2} + 1} \right)\left( {{x^4} - 1} \right)}}} dx.$$
IIT-JEE 1993
15
Determine a positive integer $$n \le 5,$$ such that $$$\int\limits_0^1 {{e^x}{{\left( {x - 1} \right)}^n}dx = 16 - 6e} $$$
IIT-JEE 1992
16
Evaluate $$\,\int\limits_0^\pi {{{x\,\sin \,2x\,\sin \left( {{\pi \over 2}\cos x} \right)} \over {2x - \pi }}dx} $$
IIT-JEE 1991
17
Show that $$\int\limits_0^{\pi /2} {f\left( {\sin 2x} \right)\sin x\,dx = \sqrt 2 } \int\limits_0^{\pi /4} {f\left( {\cos 2x} \right)\cos x\,dx} $$
IIT-JEE 1990
18
Prove that for any positive integer $$k$$,
$${{\sin 2kx} \over {\sin x}} = 2\left[ {\cos x + \cos 3x + ......... + \cos \left( {2k - 1} \right)x} \right]$$
Hence prove that $$\int\limits_0^{\pi /2} {\sin 2kx\,\cot \,x\,dx = {\pi \over 2}} $$
IIT-JEE 1990
19
If $$f$$ and $$g$$ are continuous function on $$\left[ {0,a} \right]$$ satisfying
$$f\left( x \right) = f\left( {a - x} \right)$$ and $$g\left( x \right) + g\left( {a - x} \right) = 2,$$
then show that $$\int\limits_0^a {f\left( x \right)g\left( x \right)dx = \int\limits_0^a {f\left( x \right)dx} } $$
IIT-JEE 1989
20
Evaluate $$\int\limits_0^1 {\log \left[ {\sqrt {1 - x} + \sqrt {1 + x} } \right]dx} $$
IIT-JEE 1988
21
Evaluate : $$\int\limits_0^\pi {{{x\,dx} \over {1 + \cos \,\alpha \,\sin x}},0 < \alpha < \pi } $$
IIT-JEE 1986
22
Evaluate the following : $$\,\,\int\limits_0^{\pi /2} {{{x\sin x\cos x} \over {{{\cos }^4}x + {{\sin }^4}x}}} dx$$
IIT-JEE 1985
23
Given a function $$f(x)$$ such that
(i) it is integrable over every interval on the real line and
(ii) $$f(t+x)=f(x),$$ for every $$x$$ and a real $$t$$, then show that
the integral $$\int\limits_a^{a + 1} {f\,\,\left( x \right)} \,dx$$ is independent of a.
IIT-JEE 1984
24
Evaluate the following $$\int\limits_0^{{1 \over 2}} {{{x{{\sin }^{ - 1}}x} \over {\sqrt {1 - {x^2}} }}dx} $$
IIT-JEE 1984
25
Evaluate : $$\int\limits_0^{\pi /4} {{{\sin x + \cos x} \over {9 + 16\sin 2x}}dx} $$
IIT-JEE 1983
26
Show that $$\int\limits_0^\pi {xf\left( {\sin x} \right)dx} = {\pi \over 2}\int\limits_0^\pi {f\left( {\sin x} \right)dx.} $$
IIT-JEE 1982
27
Find the value of $$\int\limits_{ - 1}^{3/2} {\left| {x\sin \,\pi \,x} \right|\,dx} $$
IIT-JEE 1982
28
Show that : $$\mathop {\lim }\limits_{n \to \infty } \left( {{1 \over {n + 1}} + {1 \over {n + 2}} + .... + {1 \over {6n}}} \right) = \log 6$$
IIT-JEE 1981

Fill in the Blanks

True or False

EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12