1
JEE Advanced 2023 Paper 1 Online
MCQ (Single Correct Answer)
+3
-1
Let $z$ be a complex number satisfying $|z|^3+2 z^2+4 \bar{z}-8=0$, where $\bar{z}$ denotes the complex conjugate of $z$. Let the imaginary part of $z$ be nonzero.
Match each entry in List-I to the correct entries in List-II.
The correct option is:
Match each entry in List-I to the correct entries in List-II.
List - I | List - II |
---|---|
(P) $|z|^2$ is equal to | (1) 12 |
(Q) $|z-\bar{z}|^2$ is equal to | (2) 4 |
(R) $|z|^2+|z+\bar{z}|^2$ is equal to | (3) 8 |
(S) $|z+1|^2$ is equal to | (4) 10 |
(5) 7 |
The correct option is:
2
JEE Advanced 2021 Paper 1 Online
MCQ (Single Correct Answer)
+3
-1
Let $\theta_1, \theta_2, \ldots, \theta_{10}$ be positive valued angles (in radian) such that $\theta_1+\theta_2+\cdots+\theta_{10}=2 \pi$. Define the complex numbers $z_1=e^{i \theta_1}, z_k=z_{k-1} e^{i \theta_k}$ for $k=2,3, \ldots, 10$, where $i=\sqrt{-1}$. Consider the statements $P$ and $Q$ given below:
$$P:\left| {{z_2} - {z_1}} \right| + \left| {{z_3} - {z_2}} \right| + ..... + \left| {{z_{10}} - {z_9}} \right| + \left| {{z_1} - {z_{10}}} \right| \le 2\pi $$
$$Q:\left| {z_2^2 - z_1^2} \right| + \left| {z_3^2 - z_2^2} \right| + .... + \left| {z_{10}^2 - z_9^2} \right| + \left| {z_1^2 - z_{10}^2} \right| \le 4\pi $$
Then,
$$P:\left| {{z_2} - {z_1}} \right| + \left| {{z_3} - {z_2}} \right| + ..... + \left| {{z_{10}} - {z_9}} \right| + \left| {{z_1} - {z_{10}}} \right| \le 2\pi $$
$$Q:\left| {z_2^2 - z_1^2} \right| + \left| {z_3^2 - z_2^2} \right| + .... + \left| {z_{10}^2 - z_9^2} \right| + \left| {z_1^2 - z_{10}^2} \right| \le 4\pi $$
Then,
3
JEE Advanced 2019 Paper 1 Offline
MCQ (Single Correct Answer)
+3
-1
Let S be the set of all complex numbers z satisfying $$\left| {z - 2 + i} \right| \ge \sqrt 5 $$. If the complex number z0 is such that $${1 \over {\left| {{z_0} - 1} \right|}}$$ is the maximum of the set $$\left\{ {{1 \over {\left| {{z_0} - 1} \right|}}:z \in S} \right\}$$, then the principal argument of $${{4 - {z_0} - {{\overline z }_0}} \over {{z_0} - {{\overline z }_0} + 2i}}$$ is
4
JEE Advanced 2014 Paper 2 Offline
MCQ (Single Correct Answer)
+3
-1
Let $${z_k}$$ = $$\cos \left( {{{2k\pi } \over {10}}} \right) + i\,\,\sin \left( {{{2k\pi } \over {10}}} \right);\,k = 1,2....,9$$
P. For each $${z_k}$$ = there exits as $${z_j}$$ such that $${z_k}$$.$${z_j}$$ = 1
Q. There exists a $$k \in \left\{ {1,2,....,9} \right\}$$ such that $${z_1}.z = {z_k}$$ has no solution z in the set of complex numbers
R. $${{\left| {1 - {z_1}} \right|\,\left| {1 - {z_2}} \right|\,....\left| {1 - {z_9}} \right|} \over {10}}$$ equals
S. $$1 - \sum\limits_{k = 1}^9 {\cos \left( {{{2k\pi } \over {10}}} \right)} $$ equals
1. True
2. False
3. 1
4. 2
List-I
P. For each $${z_k}$$ = there exits as $${z_j}$$ such that $${z_k}$$.$${z_j}$$ = 1
Q. There exists a $$k \in \left\{ {1,2,....,9} \right\}$$ such that $${z_1}.z = {z_k}$$ has no solution z in the set of complex numbers
R. $${{\left| {1 - {z_1}} \right|\,\left| {1 - {z_2}} \right|\,....\left| {1 - {z_9}} \right|} \over {10}}$$ equals
S. $$1 - \sum\limits_{k = 1}^9 {\cos \left( {{{2k\pi } \over {10}}} \right)} $$ equals
List-II
1. True
2. False
3. 1
4. 2
Questions Asked from Complex Numbers (MCQ (Single Correct Answer))
Number in Brackets after Paper Indicates No. of Questions
JEE Advanced 2023 Paper 1 Online (1)
JEE Advanced 2021 Paper 1 Online (1)
JEE Advanced 2019 Paper 1 Offline (1)
JEE Advanced 2014 Paper 2 Offline (1)
JEE Advanced 2013 Paper 2 Offline (2)
JEE Advanced 2013 Paper 1 Offline (1)
IIT-JEE 2012 Paper 1 Offline (1)
IIT-JEE 2010 Paper 2 Offline (1)
IIT-JEE 2009 Paper 1 Offline (2)
IIT-JEE 2008 Paper 2 Offline (1)
IIT-JEE 2008 Paper 1 Offline (3)
IIT-JEE 2007 (2)
IIT-JEE 2006 (1)
IIT-JEE 2005 Screening (1)
IIT-JEE 2004 Screening (1)
IIT-JEE 2003 Screening (1)
IIT-JEE 2002 Screening (1)
IIT-JEE 2002 (1)
IIT-JEE 2001 Screening (2)
IIT-JEE 2000 Screening (2)
IIT-JEE 1999 (1)
IIT-JEE 1996 (1)
IIT-JEE 1995 Screening (3)
IIT-JEE 1992 (1)
IIT-JEE 1985 (1)
IIT-JEE 1983 (2)
IIT-JEE 1982 (2)
IIT-JEE 1981 (1)
IIT-JEE 1980 (1)
IIT-JEE 1979 (1)
JEE Advanced Subjects
Physics
Mechanics
Units & Measurements Motion Laws of Motion Work Power & Energy Impulse & Momentum Rotational Motion Properties of Matter Heat and Thermodynamics Simple Harmonic Motion Waves Gravitation
Electricity
Electrostatics Current Electricity Capacitor Magnetism Electromagnetic Induction Alternating Current Electromagnetic Waves
Optics
Modern Physics
Chemistry
Physical Chemistry
Some Basic Concepts of Chemistry Structure of Atom Redox Reactions Gaseous State Chemical Equilibrium Ionic Equilibrium Solutions Thermodynamics Chemical Kinetics and Nuclear Chemistry Electrochemistry Solid State Surface Chemistry
Inorganic Chemistry
Periodic Table & Periodicity Chemical Bonding & Molecular Structure Isolation of Elements Hydrogen s-Block Elements p-Block Elements d and f Block Elements Coordination Compounds Salt Analysis
Organic Chemistry
Mathematics
Algebra
Quadratic Equation and Inequalities Sequences and Series Mathematical Induction and Binomial Theorem Matrices and Determinants Permutations and Combinations Probability Vector Algebra 3D Geometry Statistics Complex Numbers
Trigonometry
Coordinate Geometry
Calculus