1
JEE Advanced 2023 Paper 1 Online
MCQ (Single Correct Answer)
+3
-1
Change Language
Let $z$ be a complex number satisfying $|z|^3+2 z^2+4 \bar{z}-8=0$, where $\bar{z}$ denotes the complex conjugate of $z$. Let the imaginary part of $z$ be nonzero.

Match each entry in List-I to the correct entries in List-II.

List - I List - II
(P) $|z|^2$ is equal to (1) 12
(Q) $|z-\bar{z}|^2$ is equal to (2) 4
(R) $|z|^2+|z+\bar{z}|^2$ is equal to (3) 8
(S) $|z+1|^2$ is equal to (4) 10
(5) 7

The correct option is:
A
$$ (P) \rightarrow(1) \quad(Q) \rightarrow(3) \quad(R) \rightarrow(5) \quad(S) \rightarrow(4) $$
B
$$ (P) \rightarrow(2) \quad(Q) \rightarrow(1) \quad(R) \rightarrow(3) \quad(S) \rightarrow(5) $$
C
$$ (P) \rightarrow(2) \quad(Q) \rightarrow(4) \quad(R) \rightarrow(5) \quad(S) \rightarrow(1) $$
D
$$ (P) \rightarrow(2) \quad(Q) \rightarrow(3) \quad(R) \rightarrow(5) \quad(S) \rightarrow(4) $$
2
JEE Advanced 2021 Paper 1 Online
MCQ (Single Correct Answer)
+3
-1
Change Language
Let $\theta_1, \theta_2, \ldots, \theta_{10}$ be positive valued angles (in radian) such that $\theta_1+\theta_2+\cdots+\theta_{10}=2 \pi$. Define the complex numbers $z_1=e^{i \theta_1}, z_k=z_{k-1} e^{i \theta_k}$ for $k=2,3, \ldots, 10$, where $i=\sqrt{-1}$. Consider the statements $P$ and $Q$ given below:

$$P:\left| {{z_2} - {z_1}} \right| + \left| {{z_3} - {z_2}} \right| + ..... + \left| {{z_{10}} - {z_9}} \right| + \left| {{z_1} - {z_{10}}} \right| \le 2\pi $$

$$Q:\left| {z_2^2 - z_1^2} \right| + \left| {z_3^2 - z_2^2} \right| + .... + \left| {z_{10}^2 - z_9^2} \right| + \left| {z_1^2 - z_{10}^2} \right| \le 4\pi $$

Then,
A
P is TRUE and Q is FALSE
B
Q is TRUE and P is FALSE
C
both P and Q are TRUE
D
both P and Q are FALSE
3
JEE Advanced 2019 Paper 1 Offline
MCQ (Single Correct Answer)
+3
-1
Change Language
Let S be the set of all complex numbers z satisfying $$\left| {z - 2 + i} \right| \ge \sqrt 5 $$. If the complex number z0 is such that $${1 \over {\left| {{z_0} - 1} \right|}}$$ is the maximum of the set $$\left\{ {{1 \over {\left| {{z_0} - 1} \right|}}:z \in S} \right\}$$, then the principal argument of $${{4 - {z_0} - {{\overline z }_0}} \over {{z_0} - {{\overline z }_0} + 2i}}$$ is
A
$${\pi \over 4}$$
B
$${3\pi \over 4}$$
C
$$ - $$$${\pi \over 2}$$
D
$${\pi \over 2}$$
4
JEE Advanced 2014 Paper 2 Offline
MCQ (Single Correct Answer)
+3
-1
Let $${z_k}$$ = $$\cos \left( {{{2k\pi } \over {10}}} \right) + i\,\,\sin \left( {{{2k\pi } \over {10}}} \right);\,k = 1,2....,9$$

List-I


P. For each $${z_k}$$ = there exits as $${z_j}$$ such that $${z_k}$$.$${z_j}$$ = 1
Q. There exists a $$k \in \left\{ {1,2,....,9} \right\}$$ such that $${z_1}.z = {z_k}$$ has no solution z in the set of complex numbers
R. $${{\left| {1 - {z_1}} \right|\,\left| {1 - {z_2}} \right|\,....\left| {1 - {z_9}} \right|} \over {10}}$$ equals
S. $$1 - \sum\limits_{k = 1}^9 {\cos \left( {{{2k\pi } \over {10}}} \right)} $$ equals

List-II


1. True
2. False
3. 1
4. 2
A
P = 1, Q = 2, R = 4, S = 3
B
P = 2, Q = 1, R = 3, S = 4
C
P = 1, Q = 2, R = 3, S = 4
D
P =2, Q = 1, R = 4, S = 3
JEE Advanced Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12