Numerical

1
Consider the lines L1 and L2 defined by

$${L_1}:x\sqrt 2 + y - 1 = 0$$ and $${L_2}:x\sqrt 2 - y + 1 = 0$$

For a fixed constant $$\lambda$$, let C be the locus of a point P such that the product of the distance of P from L1 and the distance of P from L2 is $$\lambda$$2. The line y = 2x + 1 meets C at two points R and S, where the distance between R and S is $$\sqrt {270} $$. Let the perpendicular bisector of RS meet C at two distinct points R' and S'. Let D be the square of the distance between R' and S'.

The value of $$\lambda$$2 is __________.
JEE Advanced 2021 Paper 1 Online
2
Consider the lines L1 and L2 defined by

$${L_1}:x\sqrt 2 + y - 1 = 0$$ and $${L_2}:x\sqrt 2 - y + 1 = 0$$

For a fixed constant $$\lambda$$, let C be the locus of a point P such that the product of the distance of P from L1 and the distance of P from L2 is $$\lambda$$2. The line y = 2x + 1 meets C at two points R and S, where the distance between R and S is $$\sqrt {270} $$. Let the perpendicular bisector of RS meet C at two distinct points R' and S'. Let D be the square of the distance between R' and S'.

The value of D is __________.
JEE Advanced 2021 Paper 1 Online
3
For a point $$P$$ in the plane, Let $${d_1}\left( P \right)$$ and $${d_2}\left( P \right)$$ be the distance of the point $$P$$ from the lines $$x - y = 0$$ and $$x + y = 0$$ respectively. The area of the region $$R$$ consisting of all points $$P$$ lying in the first quadrant of the plane and satisfying $$2 \le {d_1}\left( P \right) + {d_2}\left( P \right) \le 4$$, is
JEE Advanced 2014 Paper 1 Offline

MCQ (Single Correct Answer)

1
For $$a > b > c > 0,$$ the distance between $$(1, 1)$$ and the point of intersection of the lines $$ax + by + c = 0$$ and $$bx + ay + c = 0$$ is less than $$\left( {2\sqrt 2 } \right)$$. Then
JEE Advanced 2013 Paper 1 Offline
2
A straight line $$L$$ through the point $$(3, -2)$$ is inclined at an angle $${60^ \circ }$$ to the line $$\sqrt {3x} + y = 1.$$ If $$L$$ also intersects the x-axis, then the equation of $$L$$ is
IIT-JEE 2011 Paper 1 Offline
3

Consider three points $$P = ( - \sin (\beta - \alpha ), - cos\beta ),Q = (cos(\beta - \alpha ),\sin \beta )$$ and $$R = (\cos (\beta - \alpha + \theta ),\sin (\beta - \theta ))$$ where $$0 < \alpha ,\beta ,\theta < {\pi \over 4}$$. Then :

IIT-JEE 2008 Paper 2 Offline
4

Consider the lines given by:

$${L_1}:x + 3y - 5 = 0$$

$${L_2}:3x - ky - 1 = 0$$

$${L_3}:5x + 2y - 12 = 0$$

Match the Statement/Expressions in Column I with the Statements/Expressions in Column II.

Column I Column II
(A) L$$_1$$, L$$_2$$, L$$_3$$ are concurrent, if (P) $$K = - 9$$
(B) One of L$$_1$$, L$$_2$$, L$$_3$$ is parallel to atleast one of the other two, if (Q) $$K = - {6 \over 5}$$
(C) L$$_1$$, L$$_2$$, L$$_3$$ form a triangle, if (R) $$K = {5 \over 6}$$
(D) L$$_1$$, L$$_2$$, L$$_3$$ do not form a triangle, if (S) $$K = 5$$

IIT-JEE 2008 Paper 2 Offline
5

Let a and b be non-zero real numbers. Then, the equation

$$(a{x^2} + b{y^2} + c)({x^2} - 5xy + 6{y^2}) = 0$$ represents :

IIT-JEE 2008 Paper 1 Offline
6
Let $$O\left( {0,0} \right),P\left( {3,4} \right),Q\left( {6,0} \right)$$ be the vertices of the triangles $$OPQ$$. The point $$R$$ inside the triangle $$OPQ$$ is such that the triangles $$OPR$$, $$PQR$$, $$OQR$$ are of equal area. The coordinates of $$R$$ are
IIT-JEE 2007
7
The lines $${L_1}:y - x = 0$$ and $${L_2}:2x + y = 0$$ intersect the line $${L_3}:y + 2 = 0$$ at $$P$$ and $$Q$$ respectively. The bisector of the acute angle between $${L_1}$$ and $${L_2}$$ intersects $${L_3}$$ at $$R$$.

Statement-1: The ratio $$PR$$ : $$RQ$$ equals $$2\sqrt 2 :\sqrt 5 $$. because
Statement-2: In any triangle, bisector of an angle divides the triangle into two similar triangles.

IIT-JEE 2007
8
Area of the triangle formed by the line $$x + y = 3$$ and angle bisectors of the pair of straight line $${x^2} - {y^2} + 2y = 1$$ is
IIT-JEE 2004 Screening
9
The number of integral points (integral point means both the coordinates should be integer) exactly in the interior of the triangle with vertices $$\left( {0,0} \right),\left( {0,21} \right)$$ and $$\left( {21,0} \right)$$, is
IIT-JEE 2003 Screening
10
Orthocentre of triangle with vertices $$\left( {0,0} \right),\left( {3,4} \right)$$ and $$\left( {4,0} \right)$$ is
IIT-JEE 2003 Screening
11
Let $$0 < \alpha < {\pi \over 2}$$ be fixed angle. If $$P = \left( {\cos \theta ,\,\sin \theta } \right)$$ and $$Q = \left( {\cos \left( {\alpha - \theta } \right),\,\sin \left( {\alpha - \theta } \right)} \right),$$ then $$Q$$ is obtained from $$P$$ by
IIT-JEE 2002 Screening
12
Let $$P = \left( { - 1,\,0} \right),\,Q = \left( {0,\,0} \right)$$ and $$R = \left( {3,\,3\sqrt 3 } \right)$$ be three points.
Then the equation of the bisector of the angle $$PQR$$ is
IIT-JEE 2002 Screening
13
A straight line through the origin $$O$$ meets the parallel lines $$4x+2y=9$$ and $$2x+y+6=0$$ at points $$P$$ and $$Q$$ respectively. Then the point $$O$$ divides the segemnt $$PQ$$ in the ratio
IIT-JEE 2002 Screening
14
A triangle with vertices $$(4, 0), (-1, -1), (3, 5)$$is
IIT-JEE 2002
15
Locus of mid point of the portion between the axes of $$x$$ $$\cos \alpha + y\sin \alpha = p$$ where $$p$$ is constant is
IIT-JEE 2002
16
If the pair of lines $$a{x^2} + 2hxy + b{y^2} + 2gx + 2fy + c = 0$$ intersect on the $$y$$ axis then
IIT-JEE 2002
17
The pair of lines represented by
$$3a{x^2} + 5xy + \left( {{a^2} - 2} \right){y^2} = 0$$ are perpendicular to each other for
IIT-JEE 2002
18
The number of integer values of $$m$$, for which the $$x$$-coordinate of the point of intersection of the lines $$3x + 4y = 9$$ and $$y = mx + 1$$ is also an integer, is
IIT-JEE 2001 Screening
19
Area of the parallelogram formed by the lines $$y = mx$$, $$y = mx + 1$$, $$y = nx$$ and $$y = nx + 1$$ equals
IIT-JEE 2001 Screening
20
Let $$PS$$ be the median of the triangle with vertices $$P(2, 2),$$ $$Q(6, -1)$$ and $$R(7, 3).$$ The equation of the line passing through $$(1, -1)$$ and parallel to $$PS$$ is
IIT-JEE 2000 Screening
21
The incentre of the triangle with vertices $$\left( {1,\,\sqrt 3 } \right),\left( {0,\,0} \right)$$ and $$\left( {2,\,0} \right)$$ is
IIT-JEE 2000 Screening
22
Lt $$PQR$$ be a right angled isosceles triangle, right angled at $$P(2, 1)$$. If the equation of the line $$QR$$ is $$2x + y = 3,$$ then the equation representing the pair of lines $$PQ$$ and $$PR$$ is
IIT-JEE 1999
23
If $${x_1},\,{x_2},\,{x_3}$$ as well as $${y_1},\,{y_2},\,{y_3}$$, are in G.P. with the same common ratio, then the points $$\left( {{x_1},\,{y_1}} \right),\left( {{x_2},\,{y_2}} \right)$$ and $$\left( {{x_3},\,{y_3}} \right).$$
IIT-JEE 1999
24
If $$\left( {P\left( {1,2} \right),\,Q\left( {4,6} \right),\,R\left( {5,7} \right)} \right)$$ and $$S\left( {a,b} \right)$$ are the vertices of a parrallelogram $$PQRS,$$ then
IIT-JEE 1998
25
The diagonals of a parralleogram $$PQRS$$ are along the lines $$x + 3y = 4$$ and $$6x - 2y = 7$$. Then $$PQRS$$ must be a.
IIT-JEE 1998
26
The orthocentre of the triangle formed by the lines $$xy=0$$ and $$x+y=1$$ is
IIT-JEE 1995
27
The equations to a pair of opposites sides of parallelogram are $${x^2} - 5x + 6 = 0$$ and $${y^2} - 6y + 5 = 0,$$ the equations to its diagonals are
IIT-JEE 1994
28
The locus of a variable point whose distance from $$\left( { - 2,\,0} \right)$$ is $$2/3$$ times its distance from the line $$x = - {9 \over 2}$$ is
IIT-JEE 1994
29
If the sum of the distances of a point from two perpendicular lines in a plane is 1, then its locus is
IIT-JEE 1992
30
Line $$L$$ has intercepts $$a$$ and $$b$$ on the coordinate axes. When the axes are rotated through a given angle, keeping the origin fixed, the same line $$L$$ has intercepts $$p$$ and $$q$$, then
IIT-JEE 1990
31
If $$P=(1, 0),$$ $$Q=(-1, 0)$$ and $$R=(2, 0)$$ are three given points, then locus of the point $$S$$ satisfying the relation $$S{Q^2} + S{R^2} = 2S{P^2},$$ is
IIT-JEE 1988
32
A vector $$\overline a $$ has components $$2p$$ and $$1$$ with respect to a rectangular cartesian system. This system is rotated through a certain angle about the origin in the counter clockwise sense. If, with respect to the new system, $$\overline a $$ has components $$p + 1$$ and $$1$$, then
IIT-JEE 1986
33
The points $$\left( {0,{8 \over 3}} \right),\,\,\left( {1,\,3} \right)$$ and $$\left( {82,\,30} \right)$$ are vertices of
IIT-JEE 1986
34
The straight lines $$x + y = 0,\,3x + y - 4 = 0,\,x + 3y - 4 = 0$$ form a triangle which is
IIT-JEE 1983
35
The point $$\,\left( {4,\,1} \right)$$ undergoes the following three transformations successively.
Reflection about the line $$y=x$$.
Translation through a distance 2 units along the positive direction of x-axis.
Rotation through an angle $$p/4$$ about the origin in the counter clockwise direction.
Then the final position of the point is given by the coordinates.
IIT-JEE 1980
36
The points $$\left( { - a,\, - b} \right),\,\left( {0,\,0} \right),\,\left( {a,\,b} \right)$$ and $$\left( {{a^2},\,ab} \right)$$ are :
IIT-JEE 1979

MCQ (More than One Correct Answer)

Subjective

1
The area of the triangle formed by intersection of a line parallel to $$x$$-axis and passing through $$P (h, k)$$ with the lines $$y = x $$ and $$x + y = 2$$ is $$4{h^2}$$. Find the locus of the point $$P$$.
IIT-JEE 2005
2
A straight line $$L$$ through the origin meets the lines $$x + y = 1$$ and $$x + y = 3$$ at $$P $$ and $$Q$$ respectively. Through $$P$$ and $$Q$$ two straight lines $${L_1}$$ and $${L_2}$$ are drawn, parallel to $$2x - y = 5$$ and $$3x + y = 5$$ respectively. Lines $${L_1}$$ and $${L_2}$$ intersect at $$R$$. Show that the locus of $$R$$, as $$L$$ varies is a straight line.
IIT-JEE 2002
3
A straight line $$L$$ with negative slope passes through the point $$(8, 2)$$ and cuts the positive coordinate axes at points $$P$$ and $$Q$$. Find the absolute minimum value of $$OP + OQ,$$ as $$L$$ varies, where $$O$$ is the origin.
IIT-JEE 2002
4
Let $$a, b, c$$ be real numbers with $${a^2} + {b^2} + {c^2} = 1.$$ Show that

the equation $$\left| {\matrix{ {ax - by - c} & {bx + ay} & {cx + a} \cr {bx + ay} & { - ax + by - c} & {cy + b} \cr {cx + a} & {cy + b} & { - ax - by + c} \cr } } \right| = 0$$


represents a straight line.
IIT-JEE 2001
5
Let $$ABC$$ and $$PQR$$ be any two triangles in the same plane. Assume that the prependiculars from the points $$A, B, C$$ to the sides $$QR, RP, PQ$$ respectively are concurrent. Using vector methods or otherwise, prove that the prependiculars from $$P, Q, R $$ to $$BC,$$ $$CA$$, $$AB$$ respectively are also concurrent.
IIT-JEE 2000
6
For points $$P\,\,\, = \left( {{x_1},\,{y_1}} \right)$$ and $$Q\,\,\, = \left( {{x_2},\,{y_2}} \right)$$ of the co-ordinate plane, a new distance $$d\left( {P,\,Q} \right)$$ is defined by $$d\left( {P,\,Q} \right)$$$$ = \left( {{x_2},\,{y_2}} \right)\left| {{x_1} - {x_2}} \right| + \left| {{y_1} - {y_2}} \right|.$$ Let $$O = (0, 0)$$ and $$A = (3, 2)$$. Prove that the set of points in the first quadrant which are equidistant (with respect to the new distance) from $$O$$ and $$A$$ consists of the union of a line segment of finite length and an infinite ray. Sketch this set in a labelled diagram.
IIT-JEE 2000
7
Using co-ordinate geometry, prove that the three altitudes of any triangle are concurrent.
IIT-JEE 1998
8
A rectangle $$PQRS$$ has its side $$PQ$$ parallel to the line $$y = mx$$ and vertices $$P, Q$$ and $$S$$ on the lines $$y = a, x = b$$ and $$x = -b,$$ respectively. Find the locus of the vertex $$R$$.
IIT-JEE 1996
9
A line through $$A (-5, -4)$$ meets the line $$x + 3y + 2 = 0,$$ $$2x + y + 4 = 0$$ and $$x - y - 5 = 0$$ at the points $$B, C$$ and $$D$$ respectively. If $${\left( {15/AB} \right)^2} + {\left( {10/AC} \right)^2} = {\left( {6/AD} \right)^2},$$ find the equation of the line.
IIT-JEE 1993
10
Tagent at a point $${P_1}$$ {other than $$(0, 0)$$} on the curve $$y = {x^3}$$ meets the curve again at $${P_2}$$. The tangent at $${P_2}$$ meets the curve at $${P_3}$$, and so on. Show that the abscissae of $${P_1},\,{P_2},{P_3}......{P_n},$$ form a G.P. Also find the ratio.

[area $$\left( {\Delta {P_1},{P_2},{P_3}} \right)$$]/[area $$\left( {{P_2},{P_3},{P_4}} \right)$$]

IIT-JEE 1993
11
Determine all values of $$\alpha $$ for which the point $$\left( {\alpha ,\,{\alpha ^2}} \right)$$ lies insides the triangle formed by the lines $$$\matrix{ {2x + 3y - 1 = 0} \cr {x + 2y - 3 = 0} \cr {5x - 6y - 1 = 0} \cr } $$$
IIT-JEE 1992
12
Show that all chords of the curve $$3{x^2} - {y^2} - 2x + 4y = 0,$$ which subtend a right angle at the origin, pass through a fixed point. Find the coordinates of the point.
IIT-JEE 1991
13
Find the equation of the line passing through the point $$(2, 3)$$ and making intercept of length 2 units between the lines $$y + 2x = 3$$ and $$y + 2x = 5$$. IIT-JEE 1991 Mathematics - Straight Lines and Pair of Straight Lines Question 6 English
IIT-JEE 1991
14
A line cuts the $$x$$-axis at $$A (7, 0)$$ and the $$y$$-axis at $$B (0, -5)$$. A variable line $$PQ$$ is drawn perpendicular to $$AB$$ cutting the $$x$$axis in $$P$$ and they $$Y$$-axis in $$Q$$. If $$AQ$$ and $$BP$$ intersect at $$R$$, find the locus of R.
IIT-JEE 1990
15
Straight lines $$3x + 4y = 5$$ and $$4x - 3y = 15$$ intersect at the point $$A$$. Points $$B$$ and $$C$$ are choosen on these two lines such that $$AB = AC$$. Determine the possible equations of the line $$BC$$ passing through the point $$(1, 2)$$.
IIT-JEE 1990
16
Let $$ABC$$ be a triangle with $$AB = AC$$. If $$D$$ is the midpoint of $$BC, E$$ is the foot of the perpendicular drawn from $$D$$ to $$AC$$ and $$F$$ the mid-point of $$DE$$, prove that $$AF$$ is perpendicular to $$BE$$.
IIT-JEE 1989
17
Lines$${L_1} = ax + by + c = 0$$ and $${L_2} = lx + my + n = 0$$ intersect at the point $$P$$ and make an angle $$\theta $$ with each other. Find the equation of a line $$L$$ different from $${L_2}$$ which passes through $$P$$ and makes the same angle $$\theta $$ with $${L_1}$$.
IIT-JEE 1988
18
Two sides of rhombus $$ABCD$$ are parallel to the lines $$y = x + 2$$ and $$y = 7x + 3$$. If the diagonals of the rhombus intersect at the point $$(1, 2)$$ and the vertex $$A$$ is on the $$y$$-axis, find possible co-ordinates of $$A$$.
IIT-JEE 1985
19
One of the diameters of the circle circumscribing the rectangle $$ABCD$$ is $$4y = x + 7$$. If $$A$$ and $$B$$ are the points $$(-3, 4)$$ and $$(5, 4)$$ respectively, then find the area of rectangle.
IIT-JEE 1985
20
Two equal sides of an isosceles triangle are given by the equations $$7x - y + 3 = 0$$ and $$x + y - 3 = 0$$ and its thirds side passes through the point $$(1, -10)$$. Determine the equation of the third side.
IIT-JEE 1984
21
The end $$A, B$$ of a straight line segment of constant length $$c$$ slide upon the fixed rectangular axes $$OX, OY$$ respectively. If the rectangle $$OAPB$$ be completed, then show that the locus of the foot of the perpendicular drawn from $$P$$ to $$AB$$ is $${x^{{2 \over 3}}} + {y^{{2 \over 3}}} = {c^{{2 \over 3}}}$$
IIT-JEE 1983
22
The coordinates of $$A, B, C$$ are $$(6, 3), (-3, 5), (4, -2)$$ respectively, and $$P$$ is any point $$(x, y)$$. Show that the ratio of the area of the triangles $$\Delta $$ $$PBC$$ and $$\Delta $$$$ABC$$ is $$\left| {{{x + y - 2} \over 7}} \right|$$
IIT-JEE 1983
23
The vertices of a triangle are
$$\left[ {a{t_1}{t_2},\,\,a\left( {{t_1} + {t_2}} \right)} \right],\,\,\left[ {a{t_2}{t_3},a\left( {{t_2} + {t_3}} \right)} \right],\,\,\left[ {a{t_3}{t_1},\,a\left( {{t_3} + {t_1}} \right)} \right]$$. Find the orthocentre of the triangle.
IIT-JEE 1983
24
A straight line $$L$$ is perpendicular to the line $$5x - y = 1.$$ The area of the triangle formed by the line $$L$$ and the coordinate axes is $$5$$. Find the equation of the Line $$L$$.
IIT-JEE 1980
25
(a) Two vertices of a triangle are $$(5, -1)$$ and $$(-2, 3).$$ If the orthocentre of the triangle is the origin, find the coordinates of the third point.
(b) Find the equation of the line which bisects the obtuse angle between the lines $$x - 2y + 4 = 0$$ and $$4x - 3y + 2 = 0$$.
IIT-JEE 1979
26
One side of rectangle lies along the line $$4x + 7y + 5 = 0.$$ Two of its vertices are $$(-3, 1)$$ and $$(1, 1).$$ Find the equations of the other three sides.
IIT-JEE 1978
27
The area of a triangle is $$5$$. Two of its vertices are $$A\left( {2,1} \right)$$ and $$B\left( {3, - 2} \right)$$. The third vertex $$C$$ lies on $$y = x + 3$$. Find $$C$$.
IIT-JEE 1978
28
A straight line segment of length $$\ell $$ moves with its ends on two mutually perpendicular lines. Find the locus of the point which divides the line segment in the ratio $$1 : 2$$
IIT-JEE 1978

Fill in the Blanks

True or False

EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12