Let $S=\{1,2,3,4,5,6\}$ and $X$ be the set of all relations $R$ from $S$ to $S$ that satisfy both the following properties:
i. $R$ has exactly 6 elements.
ii. For each $(a, b) \in R$, we have $|a-b| \geq 2$.
Let $Y=\{R \in X$ : The range of $R$ has exactly one element $\}$ and $Z=\{R \in X: R$ is a function from $S$ to $S\}$.
Let $n(A)$ denote the number of elements in a set $A$.
Let $S=\{1,2,3,4,5,6\}$ and $X$ be the set of all relations $R$ from $S$ to $S$ that satisfy both the following properties:
i. $R$ has exactly 6 elements.
ii. For each $(a, b) \in R$, we have $|a-b| \geq 2$.
Let $Y=\{R \in X$ : The range of $R$ has exactly one element $\}$ and $Z=\{R \in X: R$ is a function from $S$ to $S\}$.
Let $n(A)$ denote the number of elements in a set $A$.
A group of 9 students, $s_1, s_2, \ldots, s_9$, is to be divided to form three teams $X, Y$, and $Z$ of sizes 2,3 , and 4 , respectively. Suppose that $s_1$ cannot be selected for the team $X$, and $s_2$ cannot be selected for the team $Y$. Then the number of ways to form such teams, is ____________.