1
JEE Advanced 2023 Paper 1 Online
MCQ (Single Correct Answer)
+3
-1
Let $Q$ be the cube with the set of vertices $\left\{\left(x_1, x_2, x_3\right) \in \mathbb{R}^3: x_1, x_2, x_3 \in\{0,1\}\right\}$. Let $F$ be the set of all twelve lines containing the diagonals of the six faces of the cube $Q$. Let $S$ be the set of all four lines containing the main diagonals of the cube $Q$; for instance, the line passing through the vertices $(0,0,0)$ and $(1,1,1)$ is in $S$. For lines $\ell_1$ and $\ell_2$, let $d\left(\ell_1, \ell_2\right)$ denote the shortest distance between them. Then the maximum value of $d\left(\ell_1, \ell_2\right)$, as $\ell_1$ varies over $F$ and $\ell_2$ varies over $S$, is :
2
JEE Advanced 2020 Paper 1 Offline
MCQ (Single Correct Answer)
+3
-1
Consider the rectangles lying the region
$$\left\{ {(x,y) \in R \times R:0\, \le \,x\, \le \,{\pi \over 2}} \right.$$ and $$\left. {0\, \le \,y\, \le \,2\sin (2x)} \right\}$$
and having one side on the X-axis. The area of the rectangle which has the maximum perimeter among all such rectangles, is
$$\left\{ {(x,y) \in R \times R:0\, \le \,x\, \le \,{\pi \over 2}} \right.$$ and $$\left. {0\, \le \,y\, \le \,2\sin (2x)} \right\}$$
and having one side on the X-axis. The area of the rectangle which has the maximum perimeter among all such rectangles, is
3
JEE Advanced 2017 Paper 1 Offline
MCQ (Single Correct Answer)
+3
-1
By approximately matching the information given in the three columns of the following table.
Let f(x) = x + loge x $$-$$ x loge x, x$$ \in $$(0, $$\infty $$)
Column 1 contains information about zeroes of f(x), f'(x) and f"(x).
Column 2 contains information about the limiting behaviour of f(x), f'(x) and f"(x) at infinity.
Column 3 contains information about increasing/decreasing nature of f(x) and f'(x).
Let f(x) = x + loge x $$-$$ x loge x, x$$ \in $$(0, $$\infty $$)
Column 1 contains information about zeroes of f(x), f'(x) and f"(x).
Column 2 contains information about the limiting behaviour of f(x), f'(x) and f"(x) at infinity.
Column 3 contains information about increasing/decreasing nature of f(x) and f'(x).
Column - 1 | Column - 2 | Column - 3 | |
---|---|---|---|
(i) | f(x) = 0 for some $$x \in (1,{e^2})$$ | (i) $$\mathop {\lim }\limits_{x \to \infty } \,f(x) = 0$$ | f is increasing in (0, 1) |
(ii) | f'(x) = 0 for some $$x \in (1,e)$$ | $$\mathop {\lim }\limits_{x \to \infty } \,f(x) = - \infty $$ | f is decreasing in (e, $${e^2}$$) |
(iii) | f'(x) = 0 for some $$x \in (0,1)$$ | $$\mathop {\lim }\limits_{x \to \infty } \,f'(x) = - \infty $$ | f' is increasing in (0, 1) |
(iv) | f'(x) = 0 for some $$x \in (1,e)$$ | $$\mathop {\lim }\limits_{x \to \infty } \,f'(x) = 0$$ | f' is decreasing in (e, $${e^2}$$) |
Which of the following options is the only INCORRECT combination?
4
JEE Advanced 2017 Paper 1 Offline
MCQ (Single Correct Answer)
+3
-1
By approximately matching the information given in the three columns of the following table.
Let f(x) = x + loge x $$-$$ x loge x, x$$ \in $$(0, $$\infty $$)
Column 1 contains information about zeroes of f(x), f'(x) and f"(x).
Column 2 contains information about the limiting behaviour of f(x), f'(x) and f"(x) at infinity.
Column 3 contains information about increasing/decreasing nature of f(x) and f'(x).
Let f(x) = x + loge x $$-$$ x loge x, x$$ \in $$(0, $$\infty $$)
Column 1 contains information about zeroes of f(x), f'(x) and f"(x).
Column 2 contains information about the limiting behaviour of f(x), f'(x) and f"(x) at infinity.
Column 3 contains information about increasing/decreasing nature of f(x) and f'(x).
Column - 1 | Column - 2 | Column - 3 | |
---|---|---|---|
(i) | f(x) = 0 for some $$x \in (1,{e^2})$$ | (i) $$\mathop {\lim }\limits_{x \to \infty } \,f(x) = 0$$ | f is increasing in (0, 1) |
(ii) | f'(x) = 0 for some $$x \in (1,e)$$ | $$\mathop {\lim }\limits_{x \to \infty } \,f(x) = - \infty $$ | f is decreasing in (e, $${e^2}$$) |
(iii) | f'(x) = 0 for some $$x \in (0,1)$$ | $$\mathop {\lim }\limits_{x \to \infty } \,f'(x) = - \infty $$ | f' is increasing in (0, 1) |
(iv) | f'(x) = 0 for some $$x \in (1,e)$$ | $$\mathop {\lim }\limits_{x \to \infty } \,f'(x) = 0$$ | f' is decreasing in (e, $${e^2}$$) |
Which of the following options is the only CORRECT combination?
Questions Asked from Application of Derivatives (MCQ (Single Correct Answer))
Number in Brackets after Paper Indicates No. of Questions
JEE Advanced 2023 Paper 1 Online (1)
JEE Advanced 2020 Paper 1 Offline (1)
JEE Advanced 2017 Paper 1 Offline (3)
JEE Advanced 2016 Paper 1 Offline (1)
JEE Advanced 2013 Paper 2 Offline (2)
IIT-JEE 2012 Paper 2 Offline (2)
IIT-JEE 2008 Paper 1 Offline (1)
IIT-JEE 2007 (4)
IIT-JEE 2005 Screening (1)
IIT-JEE 2004 Screening (2)
IIT-JEE 2003 Screening (2)
IIT-JEE 2002 Screening (2)
IIT-JEE 2001 Screening (3)
IIT-JEE 2000 Screening (5)
IIT-JEE 1999 (1)
IIT-JEE 1998 (2)
IIT-JEE 1997 (1)
IIT-JEE 1995 Screening (3)
IIT-JEE 1994 (2)
IIT-JEE 1987 (2)
IIT-JEE 1986 (1)
IIT-JEE 1983 (4)
JEE Advanced Subjects
Physics
Mechanics
Units & Measurements Motion Laws of Motion Work Power & Energy Impulse & Momentum Rotational Motion Properties of Matter Heat and Thermodynamics Simple Harmonic Motion Waves Gravitation
Electricity
Electrostatics Current Electricity Capacitor Magnetism Electromagnetic Induction Alternating Current Electromagnetic Waves
Optics
Modern Physics
Chemistry
Physical Chemistry
Some Basic Concepts of Chemistry Structure of Atom Redox Reactions Gaseous State Chemical Equilibrium Ionic Equilibrium Solutions Thermodynamics Chemical Kinetics and Nuclear Chemistry Electrochemistry Solid State Surface Chemistry
Inorganic Chemistry
Periodic Table & Periodicity Chemical Bonding & Molecular Structure Isolation of Elements Hydrogen s-Block Elements p-Block Elements d and f Block Elements Coordination Compounds Salt Analysis
Organic Chemistry
Mathematics
Algebra
Quadratic Equation and Inequalities Sequences and Series Mathematical Induction and Binomial Theorem Matrices and Determinants Permutations and Combinations Probability Vector Algebra 3D Geometry Statistics Complex Numbers
Trigonometry
Coordinate Geometry
Calculus