1
JEE Advanced 2023 Paper 1 Online
MCQ (Single Correct Answer)
+3
-1
Change Language
Let $Q$ be the cube with the set of vertices $\left\{\left(x_1, x_2, x_3\right) \in \mathbb{R}^3: x_1, x_2, x_3 \in\{0,1\}\right\}$. Let $F$ be the set of all twelve lines containing the diagonals of the six faces of the cube $Q$. Let $S$ be the set of all four lines containing the main diagonals of the cube $Q$; for instance, the line passing through the vertices $(0,0,0)$ and $(1,1,1)$ is in $S$. For lines $\ell_1$ and $\ell_2$, let $d\left(\ell_1, \ell_2\right)$ denote the shortest distance between them. Then the maximum value of $d\left(\ell_1, \ell_2\right)$, as $\ell_1$ varies over $F$ and $\ell_2$ varies over $S$, is :
A
$\frac{1}{\sqrt{6}}$
B
$\frac{1}{\sqrt{8}}$
C
$\frac{1}{\sqrt{3}}$
D
$\frac{1}{\sqrt{12}}$
2
JEE Advanced 2020 Paper 1 Offline
MCQ (Single Correct Answer)
+3
-1
Change Language
Consider the rectangles lying the region

$$\left\{ {(x,y) \in R \times R:0\, \le \,x\, \le \,{\pi \over 2}} \right.$$ and $$\left. {0\, \le \,y\, \le \,2\sin (2x)} \right\}$$

and having one side on the X-axis. The area of the rectangle which has the maximum perimeter among all such rectangles, is
A
$${{3\pi \over 2}}$$
B
$$\pi $$
C
$${\pi \over {2\sqrt 3 }}$$
D
$${{\pi \sqrt 3 } \over 2}$$
3
JEE Advanced 2017 Paper 1 Offline
MCQ (Single Correct Answer)
+3
-1
Change Language
By approximately matching the information given in the three columns of the following table.

Let f(x) = x + loge x $$-$$ x loge x, x$$ \in $$(0, $$\infty $$)

Column 1 contains information about zeroes of f(x), f'(x) and f"(x).

Column 2 contains information about the limiting behaviour of f(x), f'(x) and f"(x) at infinity.

Column 3 contains information about increasing/decreasing nature of f(x) and f'(x).

Column - 1 Column - 2 Column - 3
(i) f(x) = 0 for some $$x \in (1,{e^2})$$ (i) $$\mathop {\lim }\limits_{x \to \infty } \,f(x) = 0$$ f is increasing in (0, 1)
(ii) f'(x) = 0 for some $$x \in (1,e)$$ $$\mathop {\lim }\limits_{x \to \infty } \,f(x) = - \infty $$ f is decreasing in (e, $${e^2}$$)
(iii) f'(x) = 0 for some $$x \in (0,1)$$ $$\mathop {\lim }\limits_{x \to \infty } \,f'(x) = - \infty $$ f' is increasing in (0, 1)
(iv) f'(x) = 0 for some $$x \in (1,e)$$ $$\mathop {\lim }\limits_{x \to \infty } \,f'(x) = 0$$ f' is decreasing in (e, $${e^2}$$)
Which of the following options is the only INCORRECT combination?
A
(I) (iii) (P)
B
(II) (iv) (Q)
C
(II) (ii) (P)
D
(III) (i) (R)
4
JEE Advanced 2017 Paper 1 Offline
MCQ (Single Correct Answer)
+3
-1
Change Language
By approximately matching the information given in the three columns of the following table.

Let f(x) = x + loge x $$-$$ x loge x, x$$ \in $$(0, $$\infty $$)

Column 1 contains information about zeroes of f(x), f'(x) and f"(x).

Column 2 contains information about the limiting behaviour of f(x), f'(x) and f"(x) at infinity.

Column 3 contains information about increasing/decreasing nature of f(x) and f'(x).

Column - 1 Column - 2 Column - 3
(i) f(x) = 0 for some $$x \in (1,{e^2})$$ (i) $$\mathop {\lim }\limits_{x \to \infty } \,f(x) = 0$$ f is increasing in (0, 1)
(ii) f'(x) = 0 for some $$x \in (1,e)$$ $$\mathop {\lim }\limits_{x \to \infty } \,f(x) = - \infty $$ f is decreasing in (e, $${e^2}$$)
(iii) f'(x) = 0 for some $$x \in (0,1)$$ $$\mathop {\lim }\limits_{x \to \infty } \,f'(x) = - \infty $$ f' is increasing in (0, 1)
(iv) f'(x) = 0 for some $$x \in (1,e)$$ $$\mathop {\lim }\limits_{x \to \infty } \,f'(x) = 0$$ f' is decreasing in (e, $${e^2}$$)
Which of the following options is the only CORRECT combination?
A
(I) (ii) (R)
B
(III) (iv) (P)
C
(II) (iii) (S)
D
(IV) (i) (S)
JEE Advanced Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12