Complex Numbers · Mathematics · JEE Advanced
MCQ (More than One Correct Answer)
satisfying |z2 + z + 1| = 1. Then which of the following statements is/are TRUE?
$$S = \left\{ {Z \in C:Z = {1 \over {a + ibt}}, + \in R,t \ne 0} \right\}$$, where $$i = \sqrt { - 1} $$. Ifz = x + iy and z $$ \in $$ S, then (x, y) lies on
Let $\omega=\frac{\sqrt{3}+i}{2}$ and $P=\left\{\omega^n: n=1,2,3, \ldots\right\}$. Further
$\mathrm{H}_1=\left\{z \in \mathrm{C}: \operatorname{Re} z<\frac{1}{2}\right\}$ and
$\mathrm{H}_2=\left\{z \in \mathrm{C}: \operatorname{Re} z<\frac{-1}{2}\right\}$, where C is the
set of all complex numbers. If $z_1 \in \mathrm{P} \cap \mathrm{H}_1, z_2 \in$ $\mathrm{P} \cap \mathrm{H}_2$ and O
represents the origin, then $\angle z_1 \mathrm{O} z_2=$
Let $z_1$ and $z_2$ be two distinct complex numbers let $z=(1-t) z_1+t z_2$ for some real number t with $0 < t < 1$.
If $\operatorname{Arg}(w)$ denotes the principal argument of a nonzero complex number $w$, then :
Numerical
Let $f(x)=x^4+a x^3+b x^2+c$ be a polynomial with real coefficients such that $f(1)=-9$. Suppose that $i \sqrt{3}$ is a root of the equation $4 x^3+3 a x^2+2 b x=0$, where $i=\sqrt{-1}$. If $\alpha_1, \alpha_2, \alpha_3$, and $\alpha_4$ are all the roots of the equation $f(x)=0$, then $\left|\alpha_1\right|^2+\left|\alpha_2\right|^2+\left|\alpha_3\right|^2+\left|\alpha_4\right|^2$ is equal to ____________.
$$ \frac{2+3 z+4 z^{2}}{2-3 z+4 z^{2}} $$
is a real number, then the value of $$|z|^{2}$$ is _________.
$$ \bar{z}-z^{2}=i\left(\bar{z}+z^{2}\right) $$
is _________.
$$a + b + c = x$$
$$a + b\omega + c{\omega ^2} = y$$
$$a + b{\omega ^2} + c\omega = z$$
Then the value of $${{{{\left| x \right|}^2} + {{\left| y \right|}^2} + {{\left| z \right|}^2}} \over {{{\left| a \right|}^2} + {{\left| b \right|}^2} + {{\left| c \right|}^2}}}$$ is
MCQ (Single Correct Answer)
Match each entry in List-I to the correct entries in List-II.
List - I | List - II |
---|---|
(P) $|z|^2$ is equal to | (1) 12 |
(Q) $|z-\bar{z}|^2$ is equal to | (2) 4 |
(R) $|z|^2+|z+\bar{z}|^2$ is equal to | (3) 8 |
(S) $|z+1|^2$ is equal to | (4) 10 |
(5) 7 |
The correct option is:
$$P:\left| {{z_2} - {z_1}} \right| + \left| {{z_3} - {z_2}} \right| + ..... + \left| {{z_{10}} - {z_9}} \right| + \left| {{z_1} - {z_{10}}} \right| \le 2\pi $$
$$Q:\left| {z_2^2 - z_1^2} \right| + \left| {z_3^2 - z_2^2} \right| + .... + \left| {z_{10}^2 - z_9^2} \right| + \left| {z_1^2 - z_{10}^2} \right| \le 4\pi $$
Then,
List-I
P. For each $${z_k}$$ = there exits as $${z_j}$$ such that $${z_k}$$.$${z_j}$$ = 1
Q. There exists a $$k \in \left\{ {1,2,....,9} \right\}$$ such that $${z_1}.z = {z_k}$$ has no solution z in the set of complex numbers
R. $${{\left| {1 - {z_1}} \right|\,\left| {1 - {z_2}} \right|\,....\left| {1 - {z_9}} \right|} \over {10}}$$ equals
S. $$1 - \sum\limits_{k = 1}^9 {\cos \left( {{{2k\pi } \over {10}}} \right)} $$ equals
List-II
1. True
2. False
3. 1
4. 2
Area of S =
$$\,\mathop {\min }\limits_{z \in S} \left| {1 - 3i - z} \right| = $$
[Note : Here z takes value in the complex plane and Im z and Re z denotes, respectively, the imaginary part and the real part of z.]
Column I
(A) The set of points z satisfying $$\left| {z - i} \right|\left. {z\,} \right\|\,\, = \left| {z + i} \right|\left. {\,z} \right\|$$ is contained in or equal to
(B) The set of points z satisfying $$\left| {z + 4} \right| + \,\left| {z - 4} \right| = 10$$ is contained in or equal to
(C) If $$\left| w \right|$$= 2, then the set of points $$z = w - {1 \over w}$$ is contained in or equal to
(D) If $$\left| w \right|$$ = 1, then the set of points $$z = w + {1 \over w}$$ is contained in or equal to.
Column II
(p) an ellipse with eccentricity $${4 \over 5}$$
(q) the set of points z satisfying Im z = 0
(r) the set of points z satisfying $$\left| {{\rm{Im }}\,{\rm{z }}} \right| \le 1$$
(s) the set of points z satisfying $$\,\left| {{\mathop{\rm Re}\nolimits} \,\,z} \right| < 2$$
(t) the set of points z satisfying $$\left| {\,z} \right| \le 3$$
Let $$z = x + iy$$ be a complex number where x and y are integers. Then the area of the rectangle whose vertices are the roots of the equation $$\overline z {z^3} + z{\overline z ^3} = 350$$ is
Let z be any point $$A \cap B \cap C$$ and let w be any point satisfying $$\left| {w - 2 - i} \right| < 3\,$$. Then, $$\left| z \right| - \left| w \right| + 3$$ lies between :
The number of elements in the set $$A \cap B \cap C$$ is
Let z be any point in $$A \cap B \cap C$$
Then, $${\left| {z + 1 - i} \right|^2} + {\left| {z - 5 - i} \right|^2}$$ lies between :
the minimum value of $$\left| {{z_1} - {z_2}} \right|$$ is
$$\,\left| {\matrix{ 1 & 1 & 1 \cr 1 & { - 1 - {\omega ^2}} & {{\omega ^2}} \cr 1 & {{\omega ^2}} & {{\omega ^4}} \cr } } \right|$$ is
where $$i = \sqrt { - 1} $$ is real number if and only if
$$\left| z \right| \le 1,$$ $$\left| \omega \right| \le 1$$ and $$\left| {z + i\omega } \right| = \left| {z - i\overline \omega } \right| = 2$$ then $$z$$ equals
$$\left| z \right| = \left| \omega \right|$$ and $${\rm A}rg\,z + {\rm A}rg\,\omega = \pi ,$$ then $$z$$ equals
Column I
(A) Re z = 0
(B) Arg $$z = {\pi \over 4}$$
Column II
(p) Re$${z^2}$$ = 0
(q) Im$${z^2}$$ = 0
(r) Re$${z^2}$$ = Im$${z^2}$$
Subjective
where, $${\rm{z = x + iy, }}\alpha {\rm{ = }}\,{\alpha _1}{\rm{ + i}}{\alpha _2}{\rm{,}}\,\beta = {\beta _1}{\rm{ + i}}{\beta _2}{\rm{ }}$$
Fill in the Blanks
$$1 \bullet \left( {2 - \omega } \right)\left( {2 - {\omega ^2}} \right) + 2 \bullet \left( {3 - \omega } \right)\left( {3 - {\omega ^2}} \right) + \,....... + \left( {n - 1} \right).\left( {n - \omega } \right)\left( {n - {\omega ^2}} \right),$$
where $$\omega $$ is an imaginary cube root of unity, is..........
then a= .......and b=..........
$$\,{\left| {a{z_1} - b{z_2}} \right|^2} + {\left| {b{z_1} + a{z_2}} \right|^2} = .........$$
is real, then the set of all possible values of $$x$$ is ..............
True or False
$$\left| {{Z_1}} \right| = \left| {{Z_2}} \right| = \left| {{Z_3}} \right|$$ then $${Z_1} + {Z_2} + {Z_3} = 0.$$
Then for all complex numbers $$z\,\,with\,\,1 \cap z,$$ we have $${{1 - z} \over {1 + z}} \cap 0.$$