If $$p$$ be a natural number then prove that $${p^{n + 1}} + {\left( {p + 1} \right)^{2n - 1}}$$ is divisible by $${p^2} + p + 1$$ for every positive integer $$n$$.
Answer
Solve it.
3
IIT-JEE 1983
Subjective
Use mathematical Induction to prove : If $$n$$ is any odd positive integer, then $$n\left( {{n^2} - 1} \right)$$ is divisible by 24.
Answer
Solve it.
4
IIT-JEE 1983
Subjective
If $${\left( {1 + x} \right)^n} = {C_0} + {C_1}x + {C_2}{x^2} + ..... + {C_n}{x^n}$$ then show that the sum of the products of the $${C_i}s$$ taken two at a time, represented $$\sum\limits_{0 \le i < j \le n} {\sum {{C_i}{C_j}} } $$ is equal to $${2^{2n - 1}} - {{\left( {2n} \right)!} \over {2{{\left( {n!} \right)}^2}}}$$
Answer
Solve it.
Questions Asked from Mathematical Induction and Binomial Theorem
On those following papers in Subjective
Number in Brackets after Paper Indicates No. of Questions