MCQ (Single Correct Answer)

1

Considering only the principal values of the inverse trigonometric functions, the value of

$$ \tan \left(\sin ^{-1}\left(\frac{3}{5}\right)-2 \cos ^{-1}\left(\frac{2}{\sqrt{5}}\right)\right) $$

is

JEE Advanced 2024 Paper 2 Online
2
For any $y \in \mathbb{R}$, let $\cot ^{-1}(y) \in(0, \pi)$ and $\tan ^{-1}(y) \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. Then the sum of all the solutions of the equation

$\tan ^{-1}\left(\frac{6 y}{9-y^2}\right)+\cot ^{-1}\left(\frac{9-y^2}{6 y}\right)=\frac{2 \pi}{3}$ for $0<|y|<3$, is equal to :
JEE Advanced 2023 Paper 2 Online
3
Match List $$I$$ with List $$II$$ and select the correct answer using the code given below the lists:

$$\,\,\,\,$$ $$\,\,\,\,$$ $$\,\,\,\,$$ List-$$I$$
(P.)$$\,\,\,\,$$ Let $$y\left( x \right) = \cos \left( {3{{\cos }^{ - 1}}x} \right),x \in \left[ { - 1,1} \right],x \ne \pm {{\sqrt 3 } \over 2}.$$ Then $${1 \over {y\left( x \right)}}\left\{ {\left( {{x^2} - 1} \right){{{d^2}y\left( x \right)} \over {d{x^2}}} + x{{dy\left( x \right)} \over {dx}}} \right\}$$ equals
(Q.)$$\,\,\,\,$$ Let $${A_1},{A_2},....,{A_n}\left( {n > 2} \right)$$ be the vertices of a regular polygon of $$n$$ sides with its centre at the origin. Let $${\overrightarrow {{a_k}} }$$ be the position vector of the point $${A_k},k = 1,2,......,n.$$ $$$f\left| {\sum\nolimits_{k = 1}^{n - 1} {\left( {\overrightarrow {{a_k}} \times \overrightarrow {{a_{k + 1}}} } \right)} } \right| = \left| {\sum\limits_{k = 1}^{n - 1} {\left( {\overrightarrow {{a_k}} .\,\overrightarrow {{a_{k + 1}}} } \right)} } \right|,$$$ then the minimum value of $$n$$ is
(R.)$$\,\,\,\,$$ If the normal from the point $$P(h, 1)$$ on the ellipse $${{{x^2}} \over 6} + {{{y^2}} \over 3} = 1$$ is perpendicular to the line $$x+y=8,$$ then the value of $$h$$ is
(S.)$$\,\,\,\,$$ Number of positive solutions satisfying the equation $${\tan ^{ - 1}}\left( {{1 \over {2x + 1}}} \right) + {\tan ^{ - 1}}\left( {{1 \over {4x + 1}}} \right) = {\tan ^{ - 1}}\left( {{2 \over {{x^2}}}} \right)$$ is

$$\,\,\,\,$$ $$\,\,\,\,$$ $$\,\,\,\,$$List-$$II$$
(1.)$$\,\,\,\,$$ $$1$$
(2.)$$\,\,\,\,$$ $$2$$
(3.)$$\,\,\,\,$$ $$8$$
(4.)$$\,\,\,\,$$ $$9$$

JEE Advanced 2014 Paper 2 Offline
4
Match List $$I$$ with List $$II$$ and select the correct answer using the code given below the lists:

List $$I$$
$$P.$$$$\,\,\,\,\,$$ $${\left( {{1 \over {{y^2}}}{{\left( {{{\cos \left( {{{\tan }^{ - 1}}y} \right) + y\sin \left( {{{\tan }^{ - 1}}y} \right)} \over {\cot \left( {{{\sin }^{ - 1}}y} \right) + \tan \left( {{{\sin }^{ - 1}}y} \right)}}} \right)}^2} + {y^4}} \right)^{1/2}}$$ takes value

$$Q.$$ $$\,\,\,\,$$ If $$\cos x + \cos y + \cos z = 0 = \sin x + \sin y + \sin z$$ then
possible value of $$\cos {{x - y} \over 2}$$ is

$$R.$$ $$\,\,\,\,\,$$ If $$\cos \left( {{\pi \over 4} - x} \right)\cos 2x + \sin x\sin 2\sec x = \cos x\sin 2x\sec x + $$
$$\cos \left( {{\pi \over 4} + x} \right)\cos 2x$$ then possible value of $$\sec x$$ is

$$S.$$ $$\,\,\,\,\,$$ If $$\cot \left( {{{\sin }^{ - 1}}\sqrt {1 - {x^2}} } \right) = \sin \left( {{{\tan }^{ - 1}}\left( {x\sqrt 6 } \right)} \right),\,\,x \ne 0,$$
Then possible value of $$x$$ is

List $$II$$
$$1.$$ $$\,\,\,\,\,$$ $${1 \over 2}\sqrt {{5 \over 3}} $$

$$2.$$ $$\,\,\,\,\,$$ $$\sqrt 2 $$

$$3.$$ $$\,\,\,\,\,$$ $${1 \over 2}$$

$$1.$$ $$\,\,\,\,$$ $$1$$

JEE Advanced 2013 Paper 2 Offline
5
The value of $$\cot \left( {\sum\limits_{n = 1}^{23} {{{\cot }^{ - 1}}} \left( {1 + \sum\limits_{k = 1}^n {2k} } \right)} \right)$$ is
JEE Advanced 2013 Paper 1 Offline
6
If $$0 < x < 1$$, then

$$\sqrt {1 + {x^2}} {\left[ {{{\left\{ {x\cos \left( {{{\cot }^{ - 1}}x} \right) + \sin \left( {{{\cot }^{ - 1}}x} \right)} \right\}}^2} - 1} \right]^{1/2}} = $$
IIT-JEE 2008 Paper 1 Offline
7
The value of $$x$$ for which $$sin\left( {{{\cot }^{ - 1}}\left( {1 + x} \right)} \right) = \cos \left( {{{\tan }^{ - 1}}\,x} \right)$$ is
IIT-JEE 2004 Screening
8
If $${\sin ^{ - 1}}\left( {x - {{{x^2}} \over 2} + {{{x^3}} \over 4} - ....} \right)$$ $$$ + {\cos ^{ - 1}}\left( {{x^2} - {{{x^4}} \over 2} + {{{x^6}} \over 4} - ....} \right) = {\pi \over 2}$$$
for $$0 < \left| x \right| < \sqrt 2 ,$$ then $$x$$ equals
IIT-JEE 2001 Screening
9
The number of real solutions of
$${\tan ^{ - 1}}\,\,\sqrt {x\left( {x + 1} \right)} + {\sin ^{ - 1}}\,\,\sqrt {{x^2} + x + 1} = \pi /2$$ is
IIT-JEE 1999
10
If we consider only the principle values of the inverse trigonometric functions then the value of
$$\tan \left( {{{\cos }^{ - 1}}{1 \over {5\sqrt 2 }} - {{\sin }^{ - 1}}{4 \over {\sqrt {17} }}} \right)$$ is
IIT-JEE 1994
11
The principal value of $${\sin ^{ - 1}}\left( {\sin {{2\pi } \over 3}} \right)$$ is
IIT-JEE 1986
12
The value of $$\tan \left[ {{{\cos }^{ - 1}}\left( {{4 \over 5}} \right) + {{\tan }^{ - 1}}\left( {{2 \over 3}} \right)} \right]$$ is
IIT-JEE 1983

Numerical

1
Let $\tan ^{-1}(x) \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, for $x \in \mathbb{R}$. Then the number of real solutions of the equation $\sqrt{1+\cos (2 x)}=\sqrt{2} \tan ^{-1}(\tan x)$ in the set $\left(-\frac{3 \pi}{2},-\frac{\pi}{2}\right) \cup\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \cup\left(\frac{\pi}{2}, \frac{3 \pi}{2}\right)$ is equal to :
JEE Advanced 2023 Paper 1 Online
2
Considering only the principal values of the inverse trigonometric functions, the value of

$$ \frac{3}{2} \cos ^{-1} \sqrt{\frac{2}{2+\pi^{2}}}+\frac{1}{4} \sin ^{-1} \frac{2 \sqrt{2} \pi}{2+\pi^{2}}+\tan ^{-1} \frac{\sqrt{2}}{\pi} $$

is
JEE Advanced 2022 Paper 1 Online
3
The value of

$${\sec ^{ - 1}}\left( \matrix{ {1 \over 4}\sum\limits_{k = 0}^{10} {\sec \left( {{{7\pi } \over {12}} + {{k\pi } \over 2}} \right)} \sec \left( {{{7\pi } \over {12}} + {{(k + 1)\pi } \over 2}} \right) \hfill \cr} \right)$$

in the interval $$\left[ { - {\pi \over 4},\,{{3\pi } \over 4}} \right]$$ equals ..........
JEE Advanced 2019 Paper 2 Offline
4
The number of real solutions of the equation $$\eqalign{ & {\sin ^{ - 1}}\left( {\sum\limits_{i = 1}^\infty {} {x^{i + 1}} - x\sum\limits_{i = 1}^\infty {} {{\left( {{x \over 2}} \right)}^i}} \right) \cr & = {\pi \over 2} - {\cos ^1}\left( {\sum\limits_{i = 1}^\infty {} {{\left( {{{ - x} \over 2}} \right)}^i} - \sum\limits_{i = 1}^\infty {} {{\left( { - x} \right)}^i}} \right) \cr} $$ lying in the interval $$\left( { - {1 \over 2},{1 \over 2}} \right)$$ is ........... .

(Here, the inverse trigonometric functions sin$$-$$1 x and cos$$-$$1 x assume values in $${\left[ { - {\pi \over 2},{\pi \over 2}} \right]}$$ and $${\left[ {0,\pi } \right]}$$, respectively.)
JEE Advanced 2018 Paper 1 Offline
5
Let f : [0, 4$$\pi$$] $$\to$$ [0, $$\pi$$] be defined by f(x) = cos$$-$$1 (cos x). The number of points x $$\in$$ [0, 4$$\pi$$] satisfying the equation $$f(x) = {{10 - x} \over {10}}$$ is
JEE Advanced 2014 Paper 1 Offline

MCQ (More than One Correct Answer)

Subjective

1
Let $$(x, y)$$ be such that $${\sin ^{ - 1}}\left( {ax} \right) + {\cos ^{ - 1}}\left( y \right) + {\cos ^{ - 1}}\left( {bxy} \right) = {\pi \over 2}$$.

Column $$I$$
(A) If $$a=1$$ and $$b=0,$$ then $$(x, y)$$
(B) If $$a=1$$ and $$b=1,$$ then $$(x, y)$$
(C) If $$a=1$$ and $$b=2,$$ then $$(x, y)$$
(D) If $$a=2$$ and $$b=2,$$ then $$(x, y)$$

Column $$II$$
(p) lies on the circle $${x^2} + {y^2} = 1$$
(q) lies on $$\left( {{x^2} - 1} \right)\left( {{y^2} - 1} \right) = 0$$
(r) lies on $$y=x$$
(s) lies on $$\left( {4{x^2} - 1} \right)\left( {{y^2} - 1} \right) = 0$$

IIT-JEE 2007
2
Match the following

Column $$I$$

(A) $$\sum\limits_{i = 1}^\infty {{{\tan }^{ - 1}}\left( {{1 \over {2{i^2}}}} \right) = t,} $$ then tan $$t=$$

(B) Sides $$a, b, c$$ of a triangle $$ABC$$ are in $$AP$$ and
$$\cos {\theta _1} = {a \over {b + c}},\,\cos {\theta _2} = {b \over {a + c}},\cos {\theta _3} = {c \over {a + b}},$$
then $${\tan ^2}\left( {{{{\theta _1}} \over 2}} \right) + {\tan ^2}\left( {{{{\theta _3}} \over 2}} \right) = $$

(C) A line is perpendicular to $$x + 2y + 2z = 0$$ and
passes through $$(0, 1, 0)$$. The perpendicular distance of this line from the origin is

Column $$II$$

(p) $$1$$

(q) $${{\sqrt 5 } \over 3}$$

(r) $${2 \over 3}$$

IIT-JEE 2006
3
Prove that $$\cos \,ta{n^{ - 1}}\sin \,{\cot ^{ - 1}}x = \sqrt {{{{x^2} + 1} \over {{x^2} + 2}}} $$.
IIT-JEE 2002
4
Find all the solution of $$4$$ $${\cos ^2}x\sin x - 2{\sin ^2}x = 3\sin x$$
IIT-JEE 1983
5
Find the value of : $$\cos \left( {2{{\cos }^{ - 1}}x + {{\sin }^{ - 1}}x} \right)$$ at $$x = {1 \over 5}$$, where
$$0 \le {\cos ^{ - 1}}x \le \pi $$ and $$ - \pi /2 \le {\sin ^{ - 1}}x \le \pi /2$$.
IIT-JEE 1981

Fill in the Blanks

EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12