Inverse Trigonometric Functions · Mathematics · JEE Advanced
MCQ (Single Correct Answer)
Considering only the principal values of the inverse trigonometric functions, the value of
$$ \tan \left(\sin ^{-1}\left(\frac{3}{5}\right)-2 \cos ^{-1}\left(\frac{2}{\sqrt{5}}\right)\right) $$
is
$\tan ^{-1}\left(\frac{6 y}{9-y^2}\right)+\cot ^{-1}\left(\frac{9-y^2}{6 y}\right)=\frac{2 \pi}{3}$ for $0<|y|<3$, is equal to :
$$\,\,\,\,$$ $$\,\,\,\,$$ $$\,\,\,\,$$ List-$$I$$
(P.)$$\,\,\,\,$$ Let $$y\left( x \right) = \cos \left( {3{{\cos }^{ - 1}}x} \right),x \in \left[ { - 1,1} \right],x \ne \pm {{\sqrt 3 } \over 2}.$$ Then $${1 \over {y\left( x \right)}}\left\{ {\left( {{x^2} - 1} \right){{{d^2}y\left( x \right)} \over {d{x^2}}} + x{{dy\left( x \right)} \over {dx}}} \right\}$$ equals
(Q.)$$\,\,\,\,$$ Let $${A_1},{A_2},....,{A_n}\left( {n > 2} \right)$$ be the vertices of a regular polygon of $$n$$ sides with its centre at the origin. Let $${\overrightarrow {{a_k}} }$$ be the position vector of the point $${A_k},k = 1,2,......,n.$$
$$$f\left| {\sum\nolimits_{k = 1}^{n - 1} {\left( {\overrightarrow {{a_k}} \times \overrightarrow {{a_{k + 1}}} } \right)} } \right| = \left| {\sum\limits_{k = 1}^{n - 1} {\left( {\overrightarrow {{a_k}} .\,\overrightarrow {{a_{k + 1}}} } \right)} } \right|,$$$
then the minimum value of $$n$$ is
(R.)$$\,\,\,\,$$ If the normal from the point $$P(h, 1)$$ on the ellipse $${{{x^2}} \over 6} + {{{y^2}} \over 3} = 1$$ is perpendicular to the line $$x+y=8,$$ then the value of $$h$$ is
(S.)$$\,\,\,\,$$ Number of positive solutions satisfying the equation $${\tan ^{ - 1}}\left( {{1 \over {2x + 1}}} \right) + {\tan ^{ - 1}}\left( {{1 \over {4x + 1}}} \right) = {\tan ^{ - 1}}\left( {{2 \over {{x^2}}}} \right)$$ is
$$\,\,\,\,$$ $$\,\,\,\,$$ $$\,\,\,\,$$List-$$II$$
(1.)$$\,\,\,\,$$ $$1$$
(2.)$$\,\,\,\,$$ $$2$$
(3.)$$\,\,\,\,$$ $$8$$
(4.)$$\,\,\,\,$$ $$9$$
List $$I$$
$$P.$$$$\,\,\,\,\,$$ $${\left( {{1 \over {{y^2}}}{{\left( {{{\cos \left( {{{\tan }^{ - 1}}y} \right) + y\sin \left( {{{\tan }^{ - 1}}y} \right)} \over {\cot \left( {{{\sin }^{ - 1}}y} \right) + \tan \left( {{{\sin }^{ - 1}}y} \right)}}} \right)}^2} + {y^4}} \right)^{1/2}}$$ takes value
$$Q.$$ $$\,\,\,\,$$ If $$\cos x + \cos y + \cos z = 0 = \sin x + \sin y + \sin z$$ then
possible value of $$\cos {{x - y} \over 2}$$ is
$$R.$$ $$\,\,\,\,\,$$ If $$\cos \left( {{\pi \over 4} - x} \right)\cos 2x + \sin x\sin 2\sec x = \cos x\sin 2x\sec x + $$
$$\cos \left( {{\pi \over 4} + x} \right)\cos 2x$$ then possible value of $$\sec x$$ is
$$S.$$ $$\,\,\,\,\,$$ If $$\cot \left( {{{\sin }^{ - 1}}\sqrt {1 - {x^2}} } \right) = \sin \left( {{{\tan }^{ - 1}}\left( {x\sqrt 6 } \right)} \right),\,\,x \ne 0,$$
Then possible value of $$x$$ is
List $$II$$
$$1.$$ $$\,\,\,\,\,$$ $${1 \over 2}\sqrt {{5 \over 3}} $$
$$2.$$ $$\,\,\,\,\,$$ $$\sqrt 2 $$
$$3.$$ $$\,\,\,\,\,$$ $${1 \over 2}$$
$$1.$$ $$\,\,\,\,$$ $$1$$
$$\sqrt {1 + {x^2}} {\left[ {{{\left\{ {x\cos \left( {{{\cot }^{ - 1}}x} \right) + \sin \left( {{{\cot }^{ - 1}}x} \right)} \right\}}^2} - 1} \right]^{1/2}} = $$
for $$0 < \left| x \right| < \sqrt 2 ,$$ then $$x$$ equals
$${\tan ^{ - 1}}\,\,\sqrt {x\left( {x + 1} \right)} + {\sin ^{ - 1}}\,\,\sqrt {{x^2} + x + 1} = \pi /2$$ is
$$\tan \left( {{{\cos }^{ - 1}}{1 \over {5\sqrt 2 }} - {{\sin }^{ - 1}}{4 \over {\sqrt {17} }}} \right)$$ is
Numerical
$$ \frac{3}{2} \cos ^{-1} \sqrt{\frac{2}{2+\pi^{2}}}+\frac{1}{4} \sin ^{-1} \frac{2 \sqrt{2} \pi}{2+\pi^{2}}+\tan ^{-1} \frac{\sqrt{2}}{\pi} $$
is
$${\sec ^{ - 1}}\left( \matrix{ {1 \over 4}\sum\limits_{k = 0}^{10} {\sec \left( {{{7\pi } \over {12}} + {{k\pi } \over 2}} \right)} \sec \left( {{{7\pi } \over {12}} + {{(k + 1)\pi } \over 2}} \right) \hfill \cr} \right)$$
in the interval $$\left[ { - {\pi \over 4},\,{{3\pi } \over 4}} \right]$$ equals ..........
(Here, the inverse trigonometric functions sin$$-$$1 x and cos$$-$$1 x assume values in $${\left[ { - {\pi \over 2},{\pi \over 2}} \right]}$$ and $${\left[ {0,\pi } \right]}$$, respectively.)
MCQ (More than One Correct Answer)
$${f_n}:(0,\infty ) \to R$$ as
$${f_n} = \sum\limits_{j = 1}^n {{{\tan }^{ - 1}}} \left( {{1 \over {1 + (x + j)(x + j - 1)}}} \right)$$
for all x$$ \in $$(0, $$\infty $$). (Here, the inverse trigonometric function tan$$-$$1 x assumes values in $$\left( { - {\pi \over 2},{\pi \over 2}} \right)$$). Then, which of the following statement(s) is (are) TRUE?
Subjective
Column $$I$$
(A) If $$a=1$$ and $$b=0,$$ then $$(x, y)$$
(B) If $$a=1$$ and $$b=1,$$ then $$(x, y)$$
(C) If $$a=1$$ and $$b=2,$$ then $$(x, y)$$
(D) If $$a=2$$ and $$b=2,$$ then $$(x, y)$$
Column $$II$$
(p) lies on the circle $${x^2} + {y^2} = 1$$
(q) lies on $$\left( {{x^2} - 1} \right)\left( {{y^2} - 1} \right) = 0$$
(r) lies on $$y=x$$
(s) lies on $$\left( {4{x^2} - 1} \right)\left( {{y^2} - 1} \right) = 0$$
Column $$I$$
(A) $$\sum\limits_{i = 1}^\infty {{{\tan }^{ - 1}}\left( {{1 \over {2{i^2}}}} \right) = t,} $$ then tan $$t=$$
(B) Sides $$a, b, c$$ of a triangle $$ABC$$ are in $$AP$$ and
$$\cos {\theta _1} = {a \over {b + c}},\,\cos {\theta _2} = {b \over {a + c}},\cos {\theta _3} = {c \over {a + b}},$$
then $${\tan ^2}\left( {{{{\theta _1}} \over 2}} \right) + {\tan ^2}\left( {{{{\theta _3}} \over 2}} \right) = $$
(C) A line is perpendicular to $$x + 2y + 2z = 0$$ and
passes through $$(0, 1, 0)$$. The perpendicular distance of this line from the origin is
Column $$II$$
(p) $$1$$
(q) $${{\sqrt 5 } \over 3}$$
(r) $${2 \over 3}$$
$$0 \le {\cos ^{ - 1}}x \le \pi $$ and $$ - \pi /2 \le {\sin ^{ - 1}}x \le \pi /2$$.
Fill in the Blanks
$$\theta = {\tan ^{ - 1}}\sqrt {{{a\left( {a + b + c} \right)} \over {bc}}} + {\tan ^{ - 1}}\sqrt {{{b\left( {a + b + c} \right)} \over {ca}}} $$ $$ + {\,\,\tan ^{ - 1}}\sqrt {{{c\left( {a + b + c} \right)} \over {ab}}} $$
Then $$\tan \theta = $$ ____________