Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function defined by
$$ f(x)=\left\{\begin{array}{cc} x^2 \sin \left(\frac{\pi}{x^2}\right), & \text { if } x \neq 0, \\ 0, & \text { if } x=0 . \end{array}\right. $$
Then which of the following statements is TRUE?
Let $f: \mathbb{R} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ be functions defined by
$$ f(x)=\left\{\begin{array}{ll} x|x| \sin \left(\frac{1}{x}\right), & x \neq 0, \\ 0, & x=0, \end{array} \quad \text { and } g(x)= \begin{cases}1-2 x, & 0 \leq x \leq \frac{1}{2}, \\ 0, & \text { otherwise } .\end{cases}\right. $$
Let $a, b, c, d \in \mathbb{R}$. Define the function $h: \mathbb{R} \rightarrow \mathbb{R}$ by
$$ h(x)=a f(x)+b\left(g(x)+g\left(\frac{1}{2}-x\right)\right)+c(x-g(x))+d g(x), x \in \mathbb{R} . $$
Match each entry in List-I to the correct entry in List-II.
List-I | List-II |
---|---|
(P) If $a = 0$, $b = 1$, $c = 0$, and $d = 0$, then | (1) $h$ is one-one. |
(Q) If $a = 1$, $b = 0$, $c = 0$, and $d = 0$, then | (2) $h$ is onto. |
(R) If $a = 0$, $b = 0$, $c = 1$, and $d = 0$, then | (3) $h$ is differentiable on $\mathbb{R}$. |
(S) If $a = 0$, $b = 0$, $c = 0$, and $d = 1$, then | (4) the range of $h$ is $[0, 1]$. |
(5) the range of $h$ is $\{0, 1\}$. |
The correct option is
$$ f(n)=n+\frac{16+5 n-3 n^{2}}{4 n+3 n^{2}}+\frac{32+n-3 n^{2}}{8 n+3 n^{2}}+\frac{48-3 n-3 n^{2}}{12 n+3 n^{2}}+\cdots+\frac{25 n-7 n^{2}}{7 n^{2}} . $$
Then, the value of $$\mathop {\lim }\limits_{n \to \infty } f\left( n \right)$$ is equal to :