1
JEE Advanced 2024 Paper 2 Online
MCQ (Single Correct Answer)
+3
-1
Change Language
Let $k \in \mathbb{R}$. If $\lim \limits_{x \rightarrow 0+}(\sin (\sin k x)+\cos x+x)^{\frac{2}{x}}=e^6$, then the value of $k$ is
A
1
B
2
C
3
D
4
2
JEE Advanced 2024 Paper 2 Online
MCQ (Single Correct Answer)
+3
-1
Change Language

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function defined by

$$ f(x)=\left\{\begin{array}{cc} x^2 \sin \left(\frac{\pi}{x^2}\right), & \text { if } x \neq 0, \\ 0, & \text { if } x=0 . \end{array}\right. $$

Then which of the following statements is TRUE?

A
$f(x)=0$ has infinitely many solutions in the interval $\left[\frac{1}{10^{10}}, \infty\right)$.
B
$f(x)=0$ has no solutions in the interval $\left[\frac{1}{\pi}, \infty\right)$.
C
The set of solutions of $f(x)=0$ in the interval $\left(0, \frac{1}{10^{10}}\right)$ is finite.
D
$f(x)=0$ has more than 25 solutions in the interval $\left(\frac{1}{\pi^2}, \frac{1}{\pi}\right)$.
3
JEE Advanced 2024 Paper 1 Online
MCQ (Single Correct Answer)
+3
-1
Change Language

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ be functions defined by

$$ f(x)=\left\{\begin{array}{ll} x|x| \sin \left(\frac{1}{x}\right), & x \neq 0, \\ 0, & x=0, \end{array} \quad \text { and } g(x)= \begin{cases}1-2 x, & 0 \leq x \leq \frac{1}{2}, \\ 0, & \text { otherwise } .\end{cases}\right. $$

Let $a, b, c, d \in \mathbb{R}$. Define the function $h: \mathbb{R} \rightarrow \mathbb{R}$ by

$$ h(x)=a f(x)+b\left(g(x)+g\left(\frac{1}{2}-x\right)\right)+c(x-g(x))+d g(x), x \in \mathbb{R} . $$

Match each entry in List-I to the correct entry in List-II.

List-I List-II
(P) If $a = 0$, $b = 1$, $c = 0$, and $d = 0$, then (1) $h$ is one-one.
(Q) If $a = 1$, $b = 0$, $c = 0$, and $d = 0$, then (2) $h$ is onto.
(R) If $a = 0$, $b = 0$, $c = 1$, and $d = 0$, then (3) $h$ is differentiable on $\mathbb{R}$.
(S) If $a = 0$, $b = 0$, $c = 0$, and $d = 1$, then (4) the range of $h$ is $[0, 1]$.
(5) the range of $h$ is $\{0, 1\}$.

The correct option is
A
$(\mathrm{P}) \rightarrow(4)$ $(\mathrm{Q}) \rightarrow(3)$ $(\mathrm{R}) \rightarrow(1)$ (S) $\rightarrow$ (2)
B
$(\mathrm{P}) \rightarrow(5)$ $(\mathrm{Q}) \rightarrow(2)$ $(\mathrm{R}) \rightarrow(4)$ (S) $\rightarrow(3)$
C
$(\mathrm{P}) \rightarrow(5)$ $(\mathrm{Q}) \rightarrow(3)$ $(\mathrm{R}) \rightarrow(2)$ $(\mathrm{S}) \rightarrow(4)$
D
$(\mathrm{P}) \rightarrow(4)$ $(\mathrm{Q}) \rightarrow(2)$ $(\mathrm{R}) \rightarrow(1)$ $(\mathrm{S}) \rightarrow(3)$
4
JEE Advanced 2022 Paper 2 Online
MCQ (Single Correct Answer)
+3
-1
Change Language
For positive integer $n$, define

$$ f(n)=n+\frac{16+5 n-3 n^{2}}{4 n+3 n^{2}}+\frac{32+n-3 n^{2}}{8 n+3 n^{2}}+\frac{48-3 n-3 n^{2}}{12 n+3 n^{2}}+\cdots+\frac{25 n-7 n^{2}}{7 n^{2}} . $$

Then, the value of $$\mathop {\lim }\limits_{n \to \infty } f\left( n \right)$$ is equal to :
A
$3+\frac{4}{3} \log _{e} 7$
B
$4-\frac{3}{4} \log _{e}\left(\frac{7}{3}\right)$
C
$4-\frac{4}{3} \log _{e}\left(\frac{7}{3}\right)$
D
$3+\frac{3}{4} \log _{e} 7$
JEE Advanced Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12