1
JEE Advanced 2020 Paper 1 Offline
MCQ (Single Correct Answer)
+3
-1
Change Language
Suppose a, b denote the distinct real roots of the quadratic polynomial x2 + 20x $$-$$ 2020 and suppose c, d denote the distinct complex roots of the quadratic polynomial x2 $$-$$ 20x + 2020. Then the value of

ac(a $$-$$ c) + ad(a $$-$$ d) + bc(b $$-$$ c) + bd(b $$-$$ d) is
A
0
B
8000
C
8080
D
16000
2
JEE Advanced 2017 Paper 2 Offline
MCQ (Single Correct Answer)
+3
-0
Change Language
Let p, q be integers and let $$\alpha $$, $$\beta $$ be the roots of the equation, x2 $$-$$ x $$-$$ 1 = 0 where $$\alpha $$ $$ \ne $$ $$\beta $$. For n = 0, 1, 2, ........, let an = p$$\alpha $$n + q$$\beta $$n.

FACT : If a and b are rational numbers and a + b$$\sqrt 5 $$ = 0, then a = 0 = b.
a12 = ?
A
a11 + 2a10
B
2a11 + a10
C
a11 $$-$$ a10
D
a11 + a10
3
JEE Advanced 2017 Paper 2 Offline
MCQ (Single Correct Answer)
+3
-0
Change Language
Let p, q be integers and let $$\alpha $$, $$\beta $$ be the roots of the equation, x2 $$-$$ x $$-$$ 1 = 0 where $$\alpha $$ $$ \ne $$ $$\beta $$. For n = 0, 1, 2, ........, let an = p$$\alpha $$n + q$$\beta $$n.

FACT : If a and b are rational numbers and a + b$$\sqrt 5 $$ = 0, then a = 0 = b.
If a4 = 28, then p + 2q =
A
14
B
7
C
21
D
12
4
JEE Advanced 2016 Paper 1 Offline
MCQ (Single Correct Answer)
+3
-1
Change Language
Let $$ - {\pi \over 6} < \theta < - {\pi \over {12}}.$$ Suppose $${\alpha _1}$$ and $${\beta_1}$$ are the roots of the equation $${x^2} - 2x\sec \theta + 1 = 0$$ and $${\alpha _2}$$ and $${\beta _2}$$ are the roots of the equation $${x^2} + 2x\,\tan \theta - 1 = 0.$$ $$If\,{\alpha _1} > {\beta _1}$$ and $${\alpha _2} > {\beta _2},$$ then $${\alpha _1} + {\beta _2}$$ equals
A
$$2\left( {\sec \theta - \tan \theta } \right)$$
B
$$2\,\sec \,\theta $$
C
$$ - 2\tan \theta $$
D
$$0$$
JEE Advanced Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12