JEE Advanced
Mathematics
Differentiation
Previous Years Questions

MCQ (More than One Correct Answer)

Let $$f:R \to R,\,g:R \to R$$ and $$h:R \to R$$ be differentiable functions such that $$f\left( x \right)= {x^3} + 3x + 2,$$ $$g\left( {f\left( x \rig...

MCQ (Single Correct Answer)

Let $$f:\left[ {0,2} \right] \to R$$ be a function which is continuous on $$\left[ {0,2} \right]$$ and is differentiable on $$(0,2)$$ with $$f(0)=1$$....
Let $$g\left( x \right) = \log f\left( x \right)$$ where $$f(x)$$ is twice differentible positive function on $$\left( {0,\infty } \right)$$ such that...
Let $$f$$ and $$g$$ be real valued functions defined on interval $$(-1, 1)$$ such that $$g''(x)$$ is continuous, $$g\left( 0 \right) \ne 0.$$ $$g'\lef...
$${{{d^2}x} \over {d{y^2}}}$$ equals
Let $$\,\,\,$$$$f\left( x \right) = 2 + \cos x$$ for all real $$X$$. STATEMENT - 1: for eachreal $$t$$, there exists a point $$c$$ in $$\left[ {t,t ...
If $$f(x)$$ is a twice differentiable function and given that $$f\left( 1 \right) = 1;f\left( 2 \right) = 4,f\left( 3 \right) = 9$$, then
If $$y$$ is a function of $$x$$ and log $$(x+y)-2xy=0$$, then the value of $$y'(0)$$ is equal to
Let $$f:\left( {0,\infty } \right) \to R$$ and $$F\left( x \right) = \int\limits_0^x {f\left( t \right)dt.} $$ If $$F\left( {{x^2}} \right) = {x^2}\l...
If $${x^2} + {y^2} = 1$$ then
If $$y = {\left( {\sin x} \right)^{\tan x}},$$ then $${{dy} \over {dx}}$$ is equal to
Let $$f(x)$$ be a quadratic expression which is positive for all the real values of $$x$$. If $$g(x)=f(x)+f''(x)$$, then for any real $$x$$,
If $${y^2} = P\left( x \right)$$, a polynomial of degree $$3$$, then $$2{d \over {dx}}\left( {{y^3}{{{d^2}y} \over {d{x^2}}}} \right)$$ equals

Numerical

Let $$f\left( \theta \right) = \sin \left( {{{\tan }^{ - 1}}\left( {{{\sin \theta } \over {\sqrt {\cos 2\theta } }}} \right)} \right),$$ where $$ - {...
If the function $$f\left( x \right) = {x^3} + {e^{{x \over 2}}}$$ and $$g\left( x \right) = {f^{ - 1}}\left( x \right)$$, then the value of $$g'(1)$$ ...

Subjective

If$$\,\,\,$$ $$y = {{a{x^2}} \over {\left( {x - a} \right)\left( {x - b} \right)\left( {x - c} \right)}} + {{bx} \over {\left( {x - b} \right)\left( {...
Find $${{{dy} \over {dx}}}$$ at $$x=-1$$, when $${\left( {\sin y} \right)^{\sin \left( {{\pi \over 2}x} \right)}} + {{\sqrt 3 } \over 2}{\sec ^{ - 1...
If $$x = \sec \theta - \cos \theta $$ and $$y = {\sec ^n}\theta - {\cos ^n}\theta $$, then show that $$\left( {{x^2} + 4} \right){\left( {{{dy} \ov...
If $$\alpha $$ be a repeated root of a quadratic equation $$f(x)=0$$ and $$A(x), B(x)$$ and $$C(x)$$ be polynomials of degree $$3$$, $$4$$ and $$5$$ r...
Let $$f$$ be a twice differentiable function such that $$f''\left( x \right) = - f\left( x \right),$$ and $$f'\left( x \right) = g\left( x \right),h...
Let $$y = {e^{x\,\sin \,{x^3}}} + {\left( {\tan x} \right)^x}$$. Find $${{dy} \over {dx}}$$
Given $$y = {{5x} \over {3\sqrt {{{\left( {1 - x} \right)}^2}} }} + {\cos ^2}\left( {2x + 1} \right)$$; Find $${{dy} \over {dx}}$$.
Find the derivative of $$$f\left( x \right) = \left\{ {\matrix{ {{{x - 1} \over {2{x^2} - 7x + 5}}} & {when\,\,x \ne 1} \cr { - {1 \over ...
Find the derivative of $$\sin \left( {{x^2} + 1} \right)$$ with respect to $$x$$ first principle.

Fill in the Blanks

If $$x{e^{xy}} = y + {\sin ^2}x,$$ then at $$x = 0,{{dy} \over {dx}} = ..............$$
If $$f\left( x \right) = \left| {x - 2} \right|$$ and $$g\left( x \right) = f\left[ {f\left( x \right)} \right]$$, then $$g'\left( x \right) = ..........
The derivative of $${\sec ^{ - 1}}\left( {{1 \over {2{x^2} - 1}}} \right)$$ with respect to $$\sqrt {1 - {x^2}} $$ at $$x = {1 \over 2}$$ is ............
If $${f_r}\left( x \right),{g_r}\left( x \right),{h_r}\left( x \right),r = 1,2,3$$ are polynomials in $$x$$ such that $${f_r}\left( a \right) = {g_r}\...
If $$f\left( x \right) = {\log _x}\left( {In\,x} \right),$$ then $$f'\left( x \right)$$ at $$x=e$$ is ................
If $$y = f\left( {{{2x - 1} \over {{x^2} + 1}}} \right)$$ and $$f'\left( x \right) = \sin {x^2}$$, then $${{dy} \over {dx}} = ..........$$

True or False

The derivative of an even function is always an odd function.
EXAM MAP
Joint Entrance Examination
JEE MainJEE AdvancedWB JEE
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Medical
NEET