Differentiation · Mathematics · JEE Advanced

Start Practice

MCQ (More than One Correct Answer)

JEE Advanced 2023 Paper 2 Online
Let $S$ be the set of all twice differentiable functions $f$ from $\mathbb{R}$ to $\mathbb{R}$ such that $\frac{d^2 f}{d x^2}(x)>0$ for all $x \in(-1,...
JEE Advanced 2016 Paper 1 Offline
Let $$f:\mathbb{R} \to \mathbb{R},\,g:\mathbb{R} \to \mathbb{R}$$ and $$h:\mathbb{R} \to \mathbb{R}$$ be differentiable functions such that $$f\left( ...
JEE Advanced 2015 Paper 2 Offline
Let $$F:R \to R$$ be a thrice differentiable function. Suppose that $$F\left( 1 \right) = 0,F\left( 3 \right) = - 4$$ and $$F'\left( x \right) < ...

MCQ (Single Correct Answer)

JEE Advanced 2014 Paper 2 Offline
Let $$f:\left[ {0,2} \right] \to R$$ be a function which is continuous on $$\left[ {0,2} \right]$$ and is differentiable on $$(0,2)$$ with $$f(0)=1$$....
IIT-JEE 2008 Paper 2 Offline
Let $$g(x) = \log f(x)$$, where $$f(x)$$ is a twice differentiable positive function on (0, $$\infty$$) such that $$f(x + 1) = xf(x)$$. Then for N = 1...
IIT-JEE 2008 Paper 2 Offline
Which of the following is true?
IIT-JEE 2008 Paper 1 Offline
If $$f\left( { - 10\sqrt 2 } \right) = 2\sqrt 2 ,$$ then $$f''\left( { - 10\sqrt 2 } \right) = $$
IIT-JEE 2008 Paper 1 Offline
Let $$f$$ and $$g$$ be real valued functions defined on interval $$(-1, 1)$$ such that $$g''(x)$$ is continuous, $$g\left( 0 \right) \ne 0.$$ $$g'\lef...
IIT-JEE 2007
$${{{d^2}x} \over {d{y^2}}}$$ equals
IIT-JEE 2007
Let $$\,\,\,$$$$f\left( x \right) = 2 + \cos x$$ for all real $$X$$. STATEMENT - 1: for eachreal $$t$$, there exists a point $$c$$ in $$\left[ {t,t ...
IIT-JEE 2005 Screening
If $$f(x)$$ is a twice differentiable function and given that $$f\left( 1 \right) = 1;f\left( 2 \right) = 4,f\left( 3 \right) = 9$$, then
IIT-JEE 2004 Screening
If $$y$$ is a function of $$x$$ and log $$(x+y)-2xy=0$$, then the value of $$y'(0)$$ is equal to
IIT-JEE 2001 Screening
Let $$f:\left( {0,\infty } \right) \to R$$ and $$F\left( x \right) = \int\limits_0^x {f\left( t \right)dt.} $$ If $$F\left( {{x^2}} \right) = {x^2}\l...
IIT-JEE 2000
If $${x^2} + {y^2} = 1$$ then
IIT-JEE 1994
If $$y = {\left( {\sin x} \right)^{\tan x}},$$ then $${{dy} \over {dx}}$$ is equal to
IIT-JEE 1990
Let $$f(x)$$ be a quadratic expression which is positive for all the real values of $$x$$. If $$g(x)=f(x)+f''(x)$$, then for any real $$x$$,
IIT-JEE 1988
If $${y^2} = P\left( x \right)$$, a polynomial of degree $$3$$, then $$2{d \over {dx}}\left( {{y^3}{{{d^2}y} \over {d{x^2}}}} \right)$$ equals

Numerical

IIT-JEE 2011 Paper 1 Offline
Let $$f\left( \theta \right) = \sin \left( {{{\tan }^{ - 1}}\left( {{{\sin \theta } \over {\sqrt {\cos 2\theta } }}} \right)} \right),$$ where $$ - {...

Subjective

IIT-JEE 2005
$$f(x)$$ is a differentiable function and $$g(x)$$ is a double differentiable function such that $$\left| {f\left( x \right)} \right| \le 1$$ and $$f...
IIT-JEE 1998
If$$\,\,\,$$ $$y = {{a{x^2}} \over {\left( {x - a} \right)\left( {x - b} \right)\left( {x - c} \right)}} + {{bx} \over {\left( {x - b} \right)\left( {...
IIT-JEE 1991
Find $${{{dy} \over {dx}}}$$ at $$x=-1$$, when $${\left( {\sin y} \right)^{\sin \left( {{\pi \over 2}x} \right)}} + {{\sqrt 3 } \over 2}{\sec ^{ - 1...
IIT-JEE 1989
If $$x = \sec \theta - \cos \theta $$ and $$y = {\sec ^n}\theta - {\cos ^n}\theta $$, then show that $$\left( {{x^2} + 4} \right){\left( {{{dy} \ov...
IIT-JEE 1984
If $$\alpha $$ be a repeated root of a quadratic equation $$f(x)=0$$ and $$A(x), B(x)$$ and $$C(x)$$ be polynomials of degree $$3$$, $$4$$ and $$5$$ r...
IIT-JEE 1982
Let $$f$$ be a twice differentiable function such that $$f''\left( x \right) = - f\left( x \right),$$ and $$f'\left( x \right) = g\left( x \right),h...
IIT-JEE 1981
Let $$y = {e^{x\,\sin \,{x^3}}} + {\left( {\tan x} \right)^x}$$. Find $${{dy} \over {dx}}$$
IIT-JEE 1980
Given $$y = {{5x} \over {3\sqrt {{{\left( {1 - x} \right)}^2}} }} + {\cos ^2}\left( {2x + 1} \right)$$; Find $${{dy} \over {dx}}$$.
IIT-JEE 1979
Find the derivative of $$$f\left( x \right) = \left\{ {\matrix{ {{{x - 1} \over {2{x^2} - 7x + 5}}} & {when\,\,x \ne 1} \cr { - {1 \over ...
IIT-JEE 1978
Find the derivative of $$\sin \left( {{x^2} + 1} \right)$$ with respect to $$x$$ first principle.

Fill in the Blanks

IIT-JEE 1996
If $$x{e^{xy}} = y + {\sin ^2}x,$$ then at $$x = 0,{{dy} \over {dx}} = ..............$$
IIT-JEE 1990
If $$f\left( x \right) = \left| {x - 2} \right|$$ and $$g\left( x \right) = f\left[ {f\left( x \right)} \right]$$, then $$g'\left( x \right) = ..........
IIT-JEE 1986
The derivative of $${\sec ^{ - 1}}\left( {{1 \over {2{x^2} - 1}}} \right)$$ with respect to $$\sqrt {1 - {x^2}} $$ at $$x = {1 \over 2}$$ is ............
IIT-JEE 1985
If $${f_r}\left( x \right),{g_r}\left( x \right),{h_r}\left( x \right),r = 1,2,3$$ are polynomials in $$x$$ such that $${f_r}\left( a \right) = {g_r}\...
IIT-JEE 1985
If $$f\left( x \right) = {\log _x}\left( {In\,x} \right),$$ then $$f'\left( x \right)$$ at $$x=e$$ is ................
IIT-JEE 1982
If $$y = f\left( {{{2x - 1} \over {{x^2} + 1}}} \right)$$ and $$f'\left( x \right) = \sin {x^2}$$, then $${{dy} \over {dx}} = ..........$$

True or False

IIT-JEE 1983
The derivative of an even function is always an odd function.
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12