1
JEE Advanced 2022 Paper 1 Online
MCQ (More than One Correct Answer)
+4
-2
Change Language

Let $$a_{1}, a_{2}, a_{3}, \ldots$$ be an arithmetic progression with $$a_{1}=7$$ and common difference 8. Let $$T_{1}, T_{2}, T_{3}, \ldots$$ be such that $$T_{1}=3$$ and $$T_{n+1}-T_{n}=a_{n}$$ for $$n \geq 1$$. Then, which of the following is/are TRUE ?

A
$$T_{20}=1604$$
B
$$\sum\limits_{k=1}^{20} T_{k}=10510$$
C
$$T_{30}=3454$$
D
$$\sum\limits_{k=1}^{30} T_{k}=35610$$
2
JEE Advanced 2021 Paper 1 Online
MCQ (More than One Correct Answer)
+4
-2
Change Language
For any positive integer n, let Sn : (0, $$\infty$$) $$\to$$ R be defined by $${S_n}(x) = \sum\nolimits_{k = 1}^n {{{\cot }^{ - 1}}\left( {{{1 + k(k + 1){x^2}} \over x}} \right)} $$, where for any x $$\in$$ R, $${\cot ^{ - 1}}(x) \in (0,\pi )$$ and $${\tan ^{ - 1}}(x) \in \left( { - {\pi \over 2},{\pi \over 2}} \right)$$. Then which of the following statements is (are) TRUE?
A
$${S_{10}}(x) = {\pi \over 2} - {\tan ^{ - 1}}\left( {{{1 + 11{x^2}} \over {10x}}} \right)$$, for all x > 0
B
$$\mathop {\lim }\limits_{n \to \infty } \cot ({S_n}(x)) = x$$, for all x > 0
C
The equation $${S_3}(x) = {\pi \over 4}$$ has a root in (0, $$\infty$$)
D
$$tan({S_n}(x)) \le {1 \over 2}$$, for all n $$\ge$$ 1 and x > 0
3
JEE Advanced 2013 Paper 1 Offline
MCQ (More than One Correct Answer)
+4
-1
Let $${S_n} = {\sum\limits_{k = 1}^{4n} {\left( { - 1} \right)} ^{{{k\left( {k + 1} \right)} \over 2}}}{k^2}.$$ Then $${S_n}$$can take value(s)
A
1056
B
1088
C
1120
D
1332
4
IIT-JEE 2008 Paper 1 Offline
MCQ (More than One Correct Answer)
+4
-2
Let $${S_n} = \sum\limits_{k = 1}^n {{n \over {{n^2} + kn + {k^2}}}} $$ and $${T_n} = \sum\limits_{k = 0}^{n - 1} {{n \over {{n^2} + kn + {k^2}}}} $$ for $$n$$ $$=1, 2, 3, ............$$ Then,
A
$${S_n} < {\pi \over {3\sqrt 3 }}$$
B
$${S_n} > {\pi \over {3\sqrt 3 }}$$
C
$${T_n} < {\pi \over {3\sqrt 3 }}$$
D
$${T_n} > {\pi \over {3\sqrt 3 }}$$
JEE Advanced Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12