1

IIT-JEE 1990

Subjective
Prove that $${{{n^7}} \over 7} + {{{n^5}} \over 5} + {{2{n^3}} \over 3} - {n \over {105}}$$ is an integer for every positive integer $$n$$

Answer

Solve it.
2

IIT-JEE 1989

Subjective
Prove that
$${C_0} - {2^2}{C_1} + {3^2}{C_2}\,\, - \,..... + {\left( { - 1} \right)^n}{\left( {n + 1} \right)^2}{C_n} = 0,\,\,\,\,n > 2,\,\,$$ where $${C_r} = {}^n{C_r}.$$

Answer

Solve it.
3

IIT-JEE 1989

Subjective
Using mathematical induction, prove that $${}^m{C_0}{}^n{C_k} + {}^m{C_1}{}^n{C_{k - 1}}\,\,\, + .....{}^m{C_k}{}^n{C_0} = {}^{\left( {m + n} \right)}{C_k},$$
where $$m,\,n,\,k$$ are positive integers, and $${}^p{C_q} = 0$$ for $$p < q.$$

Answer

Solve it.
4

IIT-JEE 1988

Subjective
Let $$R$$ $$ = {\left( {5\sqrt 5 + 11} \right)^{2n + 1}}$$ and $$f = R - \left[ R \right],$$ where [ ] denotes the greatest integer function. Prove that $$Rf = {4^{2n + 4}}$$

Answer

Solve it.

Joint Entrance Examination

JEE Main JEE Advanced WB JEE

Graduate Aptitude Test in Engineering

GATE CSE GATE ECE GATE EE GATE ME GATE CE GATE PI GATE IN

Medical

NEET

CBSE

Class 12