Limits, Continuity and Differentiability · Mathematics · JEE Advanced
MCQ (Single Correct Answer)
Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function defined by
$$ f(x)=\left\{\begin{array}{cc} x^2 \sin \left(\frac{\pi}{x^2}\right), & \text { if } x \neq 0, \\ 0, & \text { if } x=0 . \end{array}\right. $$
Then which of the following statements is TRUE?
Let $f: \mathbb{R} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ be functions defined by
$$ f(x)=\left\{\begin{array}{ll} x|x| \sin \left(\frac{1}{x}\right), & x \neq 0, \\ 0, & x=0, \end{array} \quad \text { and } g(x)= \begin{cases}1-2 x, & 0 \leq x \leq \frac{1}{2}, \\ 0, & \text { otherwise } .\end{cases}\right. $$
Let $a, b, c, d \in \mathbb{R}$. Define the function $h: \mathbb{R} \rightarrow \mathbb{R}$ by
$$ h(x)=a f(x)+b\left(g(x)+g\left(\frac{1}{2}-x\right)\right)+c(x-g(x))+d g(x), x \in \mathbb{R} . $$
Match each entry in List-I to the correct entry in List-II.
List-I | List-II |
---|---|
(P) If $a = 0$, $b = 1$, $c = 0$, and $d = 0$, then | (1) $h$ is one-one. |
(Q) If $a = 1$, $b = 0$, $c = 0$, and $d = 0$, then | (2) $h$ is onto. |
(R) If $a = 0$, $b = 0$, $c = 1$, and $d = 0$, then | (3) $h$ is differentiable on $\mathbb{R}$. |
(S) If $a = 0$, $b = 0$, $c = 0$, and $d = 1$, then | (4) the range of $h$ is $[0, 1]$. |
(5) the range of $h$ is $\{0, 1\}$. |
The correct option is
$$ f(n)=n+\frac{16+5 n-3 n^{2}}{4 n+3 n^{2}}+\frac{32+n-3 n^{2}}{8 n+3 n^{2}}+\frac{48-3 n-3 n^{2}}{12 n+3 n^{2}}+\cdots+\frac{25 n-7 n^{2}}{7 n^{2}} . $$
Then, the value of $$\mathop {\lim }\limits_{n \to \infty } f\left( n \right)$$ is equal to :
(i) $${f_1}(x) = \sin (\sqrt {1 - {e^{ - {x^2}}}} )$$,
(ii) $${f_2}(x) = \left\{ \matrix{ {{|\sin x|} \over {\tan { - ^1}x}}if\,x \ne 0,\,where \hfill \cr 1\,if\,x = 0 \hfill \cr} \right.$$
the inverse trigonometric function tan$$-$$1x assumes values in $$\left( { - {\pi \over 2},{\pi \over 2}} \right)$$,
(iii) $${f_3}(x) = [\sin ({\log _e}(x + 2))]$$, where for $$t \in R,\,[t]$$ denotes the greatest integer less than or equal to t,
(iv) $${f_4}(x) = \left\{ \matrix{ {x^2}\sin \left( {{1 \over x}} \right)\,if\,x \ne 0 \hfill \cr 0\,if\,x = 0 \hfill \cr} \right.$$
LIST-I | LIST-II |
---|---|
P. The function $$ f_1 $$ is | 1. NOT continuous at $$ x = 0 $$ |
Q. The function $$ f_2 $$ is | 2. continuous at $$ x = 0 $$ and NOT differentiable at $$ x = 0 $$ |
R. The function $$ f_3 $$ is | 3. differentiable at $$ x = 0 $$ and its derivative is NOT continuous at $$ x = 0 $$ |
S. The function $$ f_4 $$ is | 4. differentiable at $$ x = 0 $$ and its derivative is continuous at $$ x = 0 $$ |
If $$\mathop {\lim }\limits_{x \to \infty } \left( {{{{x^2} + x + 1} \over {x + 1}} - ax - b} \right) = 4$$, then
Let $$f(x) = \left\{ {\matrix{ {{x^2}\left| {\cos {\pi \over x}} \right|,} & {x \ne 0} \cr {0,} & {x = 0} \cr } } \right.$$
x$$\in$$R, then f is
If $$\mathop {\lim }\limits_{x \to 0} {[1 + x\ln (1 + {b^2})]^{1/x}} = 2b{\sin ^2}\theta $$, $$b > 0$$ and $$\theta \in ( - \pi ,\pi ]$$, then the value of $$\theta$$ is
Which of the following is true?
$$g\left( u \right) = 2{\tan ^{ - 1}}\left( {{e^u}} \right) - {\pi \over 2}.$$ Then, $$g$$ is
Let $$g(x) = {{{{(x - 1)}^n}} \over {\log {{\cos }^m}(x - 1)}};0 < x < 2,m$$ and $$n$$ are integers, $$m \ne 0,n > 0$$, and let $$p$$ be the left hand derivative of $$|x - 1|$$ at $$x = 1$$. If $$\mathop {\lim }\limits_{x \to {1^ + }} g(x) = p$$, then
MCQ (More than One Correct Answer)
Let $S$ be the set of all $(\alpha, \beta) \in \mathbb{R} \times \mathbb{R}$ such that
$$ \lim\limits_{x \rightarrow \infty} \frac{\sin \left(x^2\right)\left(\log _e x\right)^\alpha \sin \left(\frac{1}{x^2}\right)}{x^{\alpha \beta}\left(\log _e(1+x)\right)^\beta}=0 . $$
Then which of the following is (are) correct?
Then which of the following statements is (are) TRUE?
satisfying f(x + y) = f(x) + f(y) + f(x)f(y)
and f(x) = xg(x) for all x, y$$ \in $$R.
If $$\mathop {\lim }\limits_{x \to 0} g(x) = 1$$, then which of the following statements is/are TRUE?
$$\mathop {\lim }\limits_{n \to \infty } \left( {{{1 + \root 3 \of 2 + ...\root 3 \of n } \over {{n^{7/3}}\left( {{1 \over {{{(an + 1)}^2}}} + {1 \over {{{(an + 2)}^2}}} + ... + {1 \over {{{(an + n)}^2}}}} \right)}}} \right) = 54$$
PROPERTY 1 if $$\mathop {\lim }\limits_{h \to 0} {{f(h) - f(0)} \over {\sqrt {|h|} }}$$ exists and is finite, and
PROPERTY 2 if $$\mathop {\lim }\limits_{h \to 0} {{f(h) - f(0)} \over {{h^2}}}$$ exists and is finite. Then which of the following options is/are correct?
$$f(x) = \left\{ {\matrix{ {{x^5} + 5{x^4} + 10{x^3} + 10{x^2} + 3x + 1,} & {x < 0;} \cr {{x^2} - x + 1,} & {0 \le x < 1;} \cr {{2 \over 3}{x^3} - 4{x^2} + 7x - {8 \over 3},} & {1 \le x < 3;} \cr {(x - 2){{\log }_e}(x - 2) - x + {{10} \over 3},} & {x \ge 3;} \cr } } \right\}$$
Then which of the following options is/are correct?
If $$f\left( {{\pi \over 6}} \right) = - {\pi \over {12}}$$, then which of the following statement(s) is (are) TRUE?
for x $$ \ne $$ 1. Then
Let a, b $$\in$$ R and f : R $$\to$$ R be defined by $$f(x) = a\cos (|{x^3} - x|) + b|x|\sin (|{x^3} + x|)$$. Then f is
Let $$f:\left[ { - {1 \over 2},2} \right] \to R$$ and $$g:\left[ { - {1 \over 2},2} \right] \to R$$ be function defined by $$f(x) = [{x^2} - 3]$$ and $$g(x) = |x|f(x) + |4x - 7|f(x)$$, where [y] denotes the greatest integer less than or equal to y for $$y \in R$$. Then
Let $$g:R \to R$$ be a differentiable function with $$g(0) = 0$$, $$g'(0) = 0$$ and $$g'(1) \ne 0$$. Let
$$f(x) = \left\{ {\matrix{ {{x \over {|x|}}g(x),} & {x \ne 0} \cr {0,} & {x = 0} \cr } } \right.$$
and $$h(x) = {e^{|x|}}$$ for all $$x \in R$$. Let $$(f\, \circ \,h)(x)$$ denote $$f(h(x))$$ and $$(h\, \circ \,f)(x)$$ denote $$f(f(x))$$. Then which of the following is (are) true?
$$a \in R$$ (the set of all real numbers), a $$\ne$$ $$-$$1,
$$\mathop {\lim }\limits_{n \to \infty } {{({1^a} + {2^a} + ... + {n^a})} \over {{{(n + 1)}^{a - 1}}[(na + 1) + (na + 2) + ... + (na + n)]}} = {1 \over {60}}$$, Then a = ?
For every integer n, let an and bn be real numbers. Let function f : R $$\to$$ R be given by
$$f(x) = \left\{ {\matrix{ {{a_n} + \sin \pi x,} & {for\,x \in [2n,2n + 1]} \cr {{b_n} + \cos \pi x,} & {for\,x \in (2n - 1,2n)} \cr } } \right.$$, for all integers n. If f is continuous, then which of the following hold(s) for all n ?
Let f : R $$\to$$ R be a function such that $$f(x + y) = f(x) + f(y),\,\forall x,y \in R$$. If f(x) is differentiable at x = 0, then
If $$f(x) = \left\{ {\matrix{ { - x - {\pi \over 2},} & {x \le - {\pi \over 2}} \cr { - \cos x} & { - {\pi \over 2} < x \le 0} \cr {x - 1} & {0 < x \le 1} \cr {\ln x} & {x > 1} \cr } } \right.$$, then
Let $$L = \mathop {\lim }\limits_{x \to 0} {{a - \sqrt {{a^2} - {x^2}} - {{{x^2}} \over 4}} \over {{x^4}}},a > 0$$. If L is finite, then
such that $$f\left( x \right) = f\left( {1 - x} \right)$$ and $$f'\left( {{1 \over 4}} \right) = 0.$$ Then,
Numerical
$$ \beta=\lim \limits_{x \to 0} \frac{e^{x^{3}}-\left(1-x^{3}\right)^{\frac{1}{3}}+\left(\left(1-x^{2}\right)^{\frac{1}{2}}-1\right) \sin x}{x \sin ^{2} x}, $$
then the value of $6 \beta$ is ___________.
$$ f(x)=\sin \left(\frac{\pi x}{12}\right) \quad \text { and } \quad g(x)=\frac{2 \log _{\mathrm{e}}(\sqrt{x}-\sqrt{\alpha})}{\log _{\mathrm{e}}\left(e^{\sqrt{x}}-e^{\sqrt{\alpha}}\right)} . $$
Then the value of $$\lim \limits_{x \rightarrow \alpha^{+}} f(g(x))$$ is
$$\mathop {\lim }\limits_{x \to {\pi \over 2}} {{4\sqrt 2 (\sin 3x + \sin x)} \over {\left( {2\sin 2x\sin {{3x} \over 2} + \cos {{5x} \over 2}} \right) - \left( {\sqrt 2 + \sqrt 2 \cos 2x + \cos {{3x} \over 2}} \right)}}$$
is ...........
$$\mathop {\lim }\limits_{x \to {0^ + }} {{{{(1 - x)}^{1/x}} - {e^{ - 1}}} \over {{x^a}}}$$
is equal to a non-zero real number, is .............
If $$g(x) = \int\limits_x^{\pi /2} {[f'(t)\text{cosec}\,t - \cot t\,\text{cosec}\,t\,f(t)]dt} $$
for $$x \in \left( {0,\,{\pi \over 2}} \right]$$, then $$\mathop {\lim }\limits_{x \to 0} g(x)$$ =
Let $$\alpha$$, $$\beta$$ $$\in$$ R be such that $$\mathop {\lim }\limits_{x \to 0} {{{x^2}\sin (\beta x)} \over {\alpha x - \sin x}} = 1$$. Then 6($$\alpha$$ + $$\beta$$) equals _________.
The number of points at which h(x) is not differentiable is