1
IIT-JEE 2000
Subjective
+6
-0
Let $$a,\,b,\,c$$ be possitive real numbers such that $${b^2} - 4ac > 0$$ and let $${\alpha _1} = c.$$ Prove by induction that $${\alpha _{n + 1}} = {{a\alpha _n^2} \over {\left( {{b^2} - 2a\left( {{\alpha _1} + {\alpha _2} + ... + {\alpha _n}} \right)} \right)}}$$ is well-defined and
$${\alpha _{n + 1}} < {{{\alpha _n}} \over 2}$$ for all $$n = 1,2,....$$ (Here, 'well-defined' means that the denominator in the expression for $${\alpha _{n + 1}}$$ is not zero.)
$${\alpha _{n + 1}} < {{{\alpha _n}} \over 2}$$ for all $$n = 1,2,....$$ (Here, 'well-defined' means that the denominator in the expression for $${\alpha _{n + 1}}$$ is not zero.)
2
IIT-JEE 1999
Subjective
+10
-0
Let $$n$$ be any positive integer. Prove that
$$$\sum\limits_{k = 0}^m {{{\left( {\matrix{
{2n - k} \cr
k \cr
} } \right)} \over {\left( {\matrix{
{2n - k} \cr
n \cr
} } \right)}}.{{\left( {2n - 4k + 1} \right)} \over {\left( {2n - 2k + 1} \right)}}{2^{n - 2k}} = {{\left( {\matrix{
n \cr
m \cr
} } \right)} \over {\left( {\matrix{
{2n - 2m} \cr
{n - m} \cr
} } \right)}}{2^{n - 2m}}} $$$
for each non-be gatuve integer $$m \le n.$$ $$\,\left( {Here\left( {\matrix{ p \cr q \cr } } \right) = {}^p{C_q}} \right).$$
3
IIT-JEE 1998
Subjective
+8
-0
Let $$p$$ be a prime and $$m$$ a positive integer. By mathematical induction on $$m$$, or otherwise, prove that whenever $$r$$ is an integer such that $$p$$ does not divide $$r$$, $$p$$ divides $${}^{np}{C_r},$$
[Hint: You may use the fact that $${\left( {1 + x} \right)^{\left( {m + 1} \right)p}} = {\left( {1 + x} \right)^p}{\left( {1 + x} \right)^{mp}}$$]
4
IIT-JEE 1997
Subjective
+5
-0
Let $$0 < {A_i} < n$$ for $$i = 1,\,2....,\,n.$$ Use mathematical induction to prove that
$$$\sin {A_1} + \sin {A_2}....... + \sin {A_n} \le n\,\sin \,\,\left( {{{{A_1} + {A_2} + ...... + {A_n}} \over n}} \right)$$$
where $$ \ge 1$$ is a natural number. {You may use the fact that $$p\sin x + \left( {1 - p} \right)\sin y \le \sin \left[ {px + \left( {1 - p} \right)y} \right],$$ where $$0 \le p \le 1$$ and $$0 \le x,y \le \pi .$$}
Questions Asked from Mathematical Induction and Binomial Theorem (Subjective)
Number in Brackets after Paper Indicates No. of Questions
IIT-JEE 2003 (1)
IIT-JEE 2002 (1)
IIT-JEE 2000 (4)
IIT-JEE 1999 (1)
IIT-JEE 1998 (1)
IIT-JEE 1997 (1)
IIT-JEE 1996 (1)
IIT-JEE 1994 (2)
IIT-JEE 1993 (2)
IIT-JEE 1992 (2)
IIT-JEE 1991 (1)
IIT-JEE 1990 (1)
IIT-JEE 1989 (2)
IIT-JEE 1988 (1)
IIT-JEE 1987 (1)
IIT-JEE 1985 (1)
IIT-JEE 1984 (2)
IIT-JEE 1983 (2)
IIT-JEE 1982 (1)
IIT-JEE 1979 (1)
JEE Advanced Subjects
Physics
Mechanics
Units & Measurements Motion Laws of Motion Work Power & Energy Impulse & Momentum Rotational Motion Properties of Matter Heat and Thermodynamics Simple Harmonic Motion Waves Gravitation
Electricity
Electrostatics Current Electricity Capacitor Magnetism Electromagnetic Induction Alternating Current Electromagnetic Waves
Optics
Modern Physics
Chemistry
Physical Chemistry
Some Basic Concepts of Chemistry Structure of Atom Redox Reactions Gaseous State Chemical Equilibrium Ionic Equilibrium Solutions Thermodynamics Chemical Kinetics and Nuclear Chemistry Electrochemistry Solid State Surface Chemistry
Inorganic Chemistry
Periodic Table & Periodicity Chemical Bonding & Molecular Structure Isolation of Elements Hydrogen s-Block Elements p-Block Elements d and f Block Elements Coordination Compounds Salt Analysis
Organic Chemistry
Mathematics
Algebra
Quadratic Equation and Inequalities Sequences and Series Mathematical Induction and Binomial Theorem Matrices and Determinants Permutations and Combinations Probability Vector Algebra 3D Geometry Statistics Complex Numbers
Trigonometry
Coordinate Geometry
Calculus