NEW
New Website Launch
Experience the best way to solve previous year questions with mock tests (very detailed analysis), bookmark your favourite questions, practice etc...
1

IIT-JEE 2000

Subjective
Let $$a,\,b,\,c$$ be possitive real numbers such that $${b^2} - 4ac > 0$$ and let $${\alpha _1} = c.$$ Prove by induction that $${\alpha _{n + 1}} = {{a\alpha _n^2} \over {\left( {{b^2} - 2a\left( {{\alpha _1} + {\alpha _2} + ... + {\alpha _n}} \right)} \right)}}$$ is well-defined and
$${\alpha _{n + 1}} < {{{\alpha _n}} \over 2}$$ for all $$n = 1,2,....$$ (Here, 'well-defined' means that the denominator in the expression for $${\alpha _{n + 1}}$$ is not zero.)

Answer

Solve it.
2

IIT-JEE 2000

Subjective
For every possitive integer $$n$$, prove that
$$\sqrt {\left( {4n + 1} \right)} < \sqrt n + \sqrt {n + 1} < \sqrt {4n + 2}.$$
Hence or otherwise, prove that $$\left[ {\sqrt n + \sqrt {\left( {n + 1} \right)} } \right] = \left[ {\sqrt {4n + 1} \,\,} \right],$$
where $$\left[ x \right]$$ denotes the gratest integer not exceeding $$x$$.

Answer

Solve it.
3

IIT-JEE 2000

Subjective
For any positive integer $$m$$, $$n$$ (with $$n \ge m$$), let $$\left( {\matrix{ n \cr m \cr } } \right) = {}^n{C_m}$$
Prove that $$\left( {\matrix{ n \cr m \cr } } \right) + \left( {\matrix{ {n - 1} \cr m \cr } } \right) + \left( {\matrix{ {n - 2} \cr m \cr } } \right) + ........ + \left( {\matrix{ m \cr m \cr } } \right) = \left( {\matrix{ {n + 1} \cr {m + 2} \cr } } \right)$$

Hence or otherwise, prove that $$\left( {\matrix{ n \cr m \cr } } \right) + 2\left( {\matrix{ {n - 1} \cr m \cr } } \right) + 3\left( {\matrix{ {n - 2} \cr m \cr } } \right) + ........ + \left( {n - m + 1} \right)\left( {\matrix{ m \cr m \cr } } \right) = \left( {\matrix{ {n + 2} \cr {m + 2} \cr } } \right).$$.

Answer

Solve it.
4

IIT-JEE 1999

Subjective
Let $$n$$ be any positive integer. Prove that $$$\sum\limits_{k = 0}^m {{{\left( {\matrix{ {2n - k} \cr k \cr } } \right)} \over {\left( {\matrix{ {2n - k} \cr n \cr } } \right)}}.{{\left( {2n - 4k + 1} \right)} \over {\left( {2n - 2k + 1} \right)}}{2^{n - 2k}} = {{\left( {\matrix{ n \cr m \cr } } \right)} \over {\left( {\matrix{ {2n - 2m} \cr {n - m} \cr } } \right)}}{2^{n - 2m}}} $$$

for each non-be gatuve integer $$m \le n.$$ $$\,\left( {Here\left( {\matrix{ p \cr q \cr } } \right) = {}^p{C_q}} \right).$$

Answer

Solve it.

Joint Entrance Examination

JEE Main JEE Advanced WB JEE

Graduate Aptitude Test in Engineering

GATE CSE GATE ECE GATE EE GATE ME GATE CE GATE PI GATE IN

Medical

NEET

CBSE

Class 12