Numerical

MCQ (More than One Correct Answer)

MCQ (Single Correct Answer)

1
Coefficient of $${x^{11}}$$ in the expansion of $${\left( {1 + {x^2}} \right)^4}{\left( {1 + {x^3}} \right)^7}{\left( {1 + {x^4}} \right)^{12}}$$ is
JEE Advanced 2014 Paper 2 Offline
2
For $$r = 0,\,1,....,$$ let $${A_r},\,{B_r}$$ and $${C_r}$$ denote, respectively, the coefficient of $${X^r}$$ in the expansions of $${\left( {1 + x} \right)^{10}},$$ $${\left( {1 + x} \right)^{20}}$$ and $${\left( {1 + x} \right)^{30}}.$$
Then $$\sum\limits_{r = 1}^{10} {{A_r}\left( {{B_{10}}{B_r} - {C_{10}}{A_r}} \right)} $$ is equal to
IIT-JEE 2010 Paper 2 Offline
3
The value of $$$\left( {\matrix{ {30} \cr 0 \cr } } \right)\left( {\matrix{ {30} \cr {10} \cr } } \right) - \left( {\matrix{ {30} \cr 1 \cr } } \right)\left( {\matrix{ {30} \cr {11} \cr } } \right) + \left( {\matrix{ {30} \cr 2 \cr } } \right)\left( {\matrix{ {30} \cr {12} \cr } } \right)....... + \left( {\matrix{ {30} \cr {20} \cr } } \right)\left( {\matrix{ {30} \cr {30} \cr } } \right)$$$
is where $$\left( {\matrix{ n \cr r \cr } } \right) = {}^n{C_r}$$
IIT-JEE 2005 Screening
4
If $${}^{n - 1}{C_r} = \left( {{k^2} - 3} \right)\,{}^n{C_{r + 1,}}$$ then $$k \in $$
IIT-JEE 2004 Screening
5
Coefficient of $${t^{24}}$$ in $${\left( {1 + {t^2}} \right)^{12}}\left( {1 + {t^{12}}} \right)\left( {1 + {t^{24}}} \right)$$ is
IIT-JEE 2003 Screening
6
The sum $$\sum\limits_{i = 0}^m {\left( {\matrix{ {10} \cr i \cr } } \right)\left( {\matrix{ {20} \cr {m - i} \cr } } \right),\,\left( {where\left( {\matrix{ p \cr q \cr } } \right) = 0\,\,if\,\,p < q} \right)} $$ is maximum when $$m$$ is
IIT-JEE 2002 Screening
7
In the binomial expansion of $${\left( {a - b} \right)^n},\,n \ge 5,$$ the sum of the $${5^{th}}$$ and $${6^{th}}$$ terms is zero. Then $$a/b$$ equals
IIT-JEE 2001 Screening
8
For $$2 \le r \le n,\,\,\,\,\left( {\matrix{ n \cr r \cr } } \right) + 2\left( {\matrix{ n \cr {r - 1} \cr } } \right) + \left( {\matrix{ n \cr {r - 2} \cr } } \right) = $$
IIT-JEE 2000 Screening
9
If in the expansion of $${\left( {1 + x} \right)^m}{\left( {1 - x} \right)^n},$$ the coefficients of $$x$$ and $${x^2}$$ are $$3$$ and $$-6$$ respectively, then $$m$$ is
IIT-JEE 1999
10
If $${a_n} = \sum\limits_{r = 0}^n {{1 \over {{}^n{C_r}}},\,\,\,then\,\,\,\sum\limits_{r = 0}^n {{r \over {{}^n{C_r}}}} } $$ equals
IIT-JEE 1998
11
The expansion $${\left( {x + {{\left( {{x^3} - 1} \right)}^{{1 \over 2}}}} \right)^5} + {\left( {x - {{\left( {{x^3} - 1} \right)}^{{1 \over 2}}}} \right)^5}$$ is a polynomial of degree
IIT-JEE 1992
12
If $${C_r}$$ stands for $${}^n{C_r},$$ then the sum of the series $${{2\left( {{n \over 2}} \right){\mkern 1mu} !{\mkern 1mu} \left( {{n \over 2}} \right){\mkern 1mu} !} \over {n!}}\left[ {C_0^2 - 2C_1^2 + 3C_2^2 - } \right......... + {\left( { - 1} \right)^n}\left( {n + 1} \right)C_n^2\mathop ]\limits^ \sim \,,$$
where $$n$$ is an even positive integer, is equal to
IIT-JEE 1986
13
Given positive integers $$r > 1,\,n > 2$$ and that the coefficient of $$\left( {3r} \right)$$th and $$\left( {r + 2} \right)$$th terms in the binomial expansion of $${\left( {1 + x} \right)^{2n}}$$ are equal. Then
IIT-JEE 1983
14
The coefficient of $${x^4}$$ in $${\left( {{x \over 2} - {3 \over {{x^2}}}} \right)^{10}}$$ is
IIT-JEE 1983

Subjective

1
Prove that
$${2^k}\left( {\matrix{ n \cr 0 \cr } } \right)\left( {\matrix{ n \cr k \cr } } \right) - {2^{^{k - 1}\left( {\matrix{ n \cr 2 \cr } } \right)}}\left( {\matrix{ n \cr 1 \cr } } \right)\left( {\matrix{ {n - 1} \cr {k - 1} \cr } } \right)$$
$$ + {2^{k - 2}}\left( {\matrix{ {n - 2} \cr {k - 2} \cr } } \right) - .....{\left( { - 1} \right)^k}\left( {\matrix{ n \cr k \cr } } \right)\left( {\matrix{ {n - k} \cr 0 \cr } } \right) = {\left( {\matrix{ n \cr k \cr } } \right)^ \cdot }$$
IIT-JEE 2003
2
Use mathematical induction to show that
$${\left( {25} \right)^{n + 1}} - 24n + 5735$$ is divisible by $${\left( {24} \right)^2}$$ for all $$ = n = 1,2,...$$
IIT-JEE 2002
3
For every possitive integer $$n$$, prove that
$$\sqrt {\left( {4n + 1} \right)} < \sqrt n + \sqrt {n + 1} < \sqrt {4n + 2}.$$
Hence or otherwise, prove that $$\left[ {\sqrt n + \sqrt {\left( {n + 1} \right)} } \right] = \left[ {\sqrt {4n + 1} \,\,} \right],$$
where $$\left[ x \right]$$ denotes the gratest integer not exceeding $$x$$.
IIT-JEE 2000
4
For any positive integer $$m$$, $$n$$ (with $$n \ge m$$), let $$\left( {\matrix{ n \cr m \cr } } \right) = {}^n{C_m}$$
Prove that $$\left( {\matrix{ n \cr m \cr } } \right) + \left( {\matrix{ {n - 1} \cr m \cr } } \right) + \left( {\matrix{ {n - 2} \cr m \cr } } \right) + ........ + \left( {\matrix{ m \cr m \cr } } \right) = \left( {\matrix{ {n + 1} \cr {m + 2} \cr } } \right)$$

Hence or otherwise, prove that $$\left( {\matrix{ n \cr m \cr } } \right) + 2\left( {\matrix{ {n - 1} \cr m \cr } } \right) + 3\left( {\matrix{ {n - 2} \cr m \cr } } \right) + ........ + \left( {n - m + 1} \right)\left( {\matrix{ m \cr m \cr } } \right) = \left( {\matrix{ {n + 2} \cr {m + 2} \cr } } \right).$$.

IIT-JEE 2000
5
Let $$a,\,b,\,c$$ be possitive real numbers such that $${b^2} - 4ac > 0$$ and let $${\alpha _1} = c.$$ Prove by induction that $${\alpha _{n + 1}} = {{a\alpha _n^2} \over {\left( {{b^2} - 2a\left( {{\alpha _1} + {\alpha _2} + ... + {\alpha _n}} \right)} \right)}}$$ is well-defined and
$${\alpha _{n + 1}} < {{{\alpha _n}} \over 2}$$ for all $$n = 1,2,....$$ (Here, 'well-defined' means that the denominator in the expression for $${\alpha _{n + 1}}$$ is not zero.)
IIT-JEE 2000
6
A coin probability $$p$$ of showing head when tossed. It is tossed $$n$$ times. Let $${p_n}$$ denote the probability that no two (or more) consecutive heads occur. Prove that $${p_1} = 1,\,\,{p_2} = 1 - {p^2}$$ and $${p_n} = \left( {1 - p} \right).\,\,{p_{n - 1}} + p\left( {1 - p} \right){p_{n - 2}}$$ for all $$n \ge 3.$$

Prove by induction on, that $${p_n} = A{\alpha ^n} + B{\beta ^n}$$ for all $$n \ge 1,$$ where $$\alpha $$ and $$\beta $$ are the roots of quadratic equation $${x^2} - \left( {1 - p} \right)x - p\left( {1 - p} \right) = 0$$ and $$A = {{{p^2} + \beta - 1} \over {\alpha \beta - {\alpha ^2}}},B = {{{p^2} + \alpha - 1} \over {\alpha \beta - {\beta ^2}}}.$$

IIT-JEE 2000
7
Let $$n$$ be any positive integer. Prove that $$$\sum\limits_{k = 0}^m {{{\left( {\matrix{ {2n - k} \cr k \cr } } \right)} \over {\left( {\matrix{ {2n - k} \cr n \cr } } \right)}}.{{\left( {2n - 4k + 1} \right)} \over {\left( {2n - 2k + 1} \right)}}{2^{n - 2k}} = {{\left( {\matrix{ n \cr m \cr } } \right)} \over {\left( {\matrix{ {2n - 2m} \cr {n - m} \cr } } \right)}}{2^{n - 2m}}} $$$

for each non-be gatuve integer $$m \le n.$$ $$\,\left( {Here\left( {\matrix{ p \cr q \cr } } \right) = {}^p{C_q}} \right).$$

IIT-JEE 1999
8
Let $$p$$ be a prime and $$m$$ a positive integer. By mathematical induction on $$m$$, or otherwise, prove that whenever $$r$$ is an integer such that $$p$$ does not divide $$r$$, $$p$$ divides $${}^{np}{C_r},$$

[Hint: You may use the fact that $${\left( {1 + x} \right)^{\left( {m + 1} \right)p}} = {\left( {1 + x} \right)^p}{\left( {1 + x} \right)^{mp}}$$]

IIT-JEE 1998
9
Let $$0 < {A_i} < n$$ for $$i = 1,\,2....,\,n.$$ Use mathematical induction to prove that $$$\sin {A_1} + \sin {A_2}....... + \sin {A_n} \le n\,\sin \,\,\left( {{{{A_1} + {A_2} + ...... + {A_n}} \over n}} \right)$$$

where $$ \ge 1$$ is a natural number. {You may use the fact that $$p\sin x + \left( {1 - p} \right)\sin y \le \sin \left[ {px + \left( {1 - p} \right)y} \right],$$ where $$0 \le p \le 1$$ and $$0 \le x,y \le \pi .$$}

IIT-JEE 1997
10
Using mathematical induction prove that for every integer $$n \ge 1,\,\,\left( {{3^{2n}} - 1} \right)$$ is divisible by $${2^{n + 2}}$$ but not by $${2^{n + 3}}$$.
IIT-JEE 1996
11
Let $$n$$ be a positive integer and $${\left( {1 + x + {x^2}} \right)^n} = {a_0} + {a_1}x + ............ + {a_{2n}}{x^{2n}}$$
Show that $$a_0^2 - a_1^2 + a_2^2...... + {a_{2n}}{}^2 = {a_n}$$
IIT-JEE 1994
12
If $$x$$ is not an integral multiple of $$2\pi $$ use mathematical induction to prove that : $$$\cos x + \cos 2x + .......... + \cos nx = \cos {{n + 1} \over 2}x\sin {{nx} \over 2}\cos ec{x \over 2}$$$
IIT-JEE 1994
13
Using mathematical induction, prove that
$${\tan ^{ - 1}}\left( {1/3} \right) + {\tan ^{ - 1}}\left( {1/7} \right) + ........{\tan ^{ - 1}}\left\{ {1/\left( {{n^2} + n + 1} \right)} \right\} = {\tan ^{ - 1}}\left\{ {n/\left( {n + 2} \right)} \right\}$$
IIT-JEE 1993
14
Prove that $$\sum\limits_{r = 1}^k {{{\left( { - 3} \right)}^{r - 1}}\,\,{}^{3n}{C_{2r - 1}} = 0,} $$ where $$k = \left( {3n} \right)/2$$ and $$n$$ is an even positive integer.
IIT-JEE 1993
15
Let $$p \ge 3$$ be an integer and $$\alpha $$, $$\beta $$ be the roots of $${x^2} - \left( {p + 1} \right)x + 1 = 0$$ using mathematical induction show that $${\alpha ^n} + {\beta ^n}.$$
(i) is an integer and (ii) is not divisible by $$p$$
IIT-JEE 1992
16
If $$\sum\limits_{r = 0}^{2n} {{a_r}{{\left( {x - 2} \right)}^r}\,\, = \sum\limits_{r = 0}^{2n} {{b_r}{{\left( {x - 3} \right)}^r}} } $$ and $${a_k} = 1$$ for all $$k \ge n,$$ then show that $${b_n} = {}^{2n + 1}{C_{n + 1}}$$
IIT-JEE 1992
17
Using induction or otherwise, prove that for any non-negative integers $$m$$, $$n$$, $$r$$ and $$k$$ ,
$$\sum\limits_{m = 0}^k {\left( {n - m} \right)} {{\left( {r + m} \right)!} \over {m!}} = {{\left( {r + k + 1} \right)!} \over {k!}}\left[ {{n \over {r + 1}} - {k \over {r + 2}}} \right]$$
IIT-JEE 1991
18
Prove that $${{{n^7}} \over 7} + {{{n^5}} \over 5} + {{2{n^3}} \over 3} - {n \over {105}}$$ is an integer for every positive integer $$n$$
IIT-JEE 1990
19
Prove that
$${C_0} - {2^2}{C_1} + {3^2}{C_2}\,\, - \,..... + {\left( { - 1} \right)^n}{\left( {n + 1} \right)^2}{C_n} = 0,\,\,\,\,n > 2,\,\,$$ where $${C_r} = {}^n{C_r}.$$
IIT-JEE 1989
20
Using mathematical induction, prove that $${}^m{C_0}{}^n{C_k} + {}^m{C_1}{}^n{C_{k - 1}}\,\,\, + .....{}^m{C_k}{}^n{C_0} = {}^{\left( {m + n} \right)}{C_k},$$
where $$m,\,n,\,k$$ are positive integers, and $${}^p{C_q} = 0$$ for $$p < q.$$
IIT-JEE 1989
21
Let $$R$$ $$ = {\left( {5\sqrt 5 + 11} \right)^{2n + 1}}$$ and $$f = R - \left[ R \right],$$ where [ ] denotes the greatest integer function. Prove that $$Rf = {4^{2n + 4}}$$
IIT-JEE 1988
22
Prove by mathematical induction that $$ - 5 - {{\left( {2n} \right)!} \over {{2^{2n}}{{\left( {n!} \right)}^2}}} \le {1 \over {{{\left( {3n + 1} \right)}^{1/2}}}}$$ for all positive integers $$n$$.
IIT-JEE 1987
23
Use method of mathematical induction $${2.7^n} + {3.5^n} - 5$$ is divisible by $$24$$ for all $$n > 0$$
IIT-JEE 1985
24
Given $${s_n} = 1 + q + {q^2} + ...... + {q^2};$$
$${S_n} = 1 + {{q + 1} \over 2} + {\left( {{{q + 1} \over 2}} \right)^2} + ........ + {\left( {{{q + 1} \over 2}} \right)^n}\,\,\,,q \ne 1$$
Prove that $${}^{n + 1}{C_1} + {}^{n + 1}{C_2}{s_1} + {}^{n + 1}{C_3}{s_2} + ..... + {}^{n + 1}{C_n}{s_n} = {2^n}{S_n}$$
IIT-JEE 1984
25
If $$p$$ be a natural number then prove that $${p^{n + 1}} + {\left( {p + 1} \right)^{2n - 1}}$$ is divisible by $${p^2} + p + 1$$ for every positive integer $$n$$.
IIT-JEE 1984
26
Use mathematical Induction to prove : If $$n$$ is any odd positive integer, then $$n\left( {{n^2} - 1} \right)$$ is divisible by 24.
IIT-JEE 1983
27
If $${\left( {1 + x} \right)^n} = {C_0} + {C_1}x + {C_2}{x^2} + ..... + {C_n}{x^n}$$ then show that the sum of the products of the $${C_i}s$$ taken two at a time, represented $$\sum\limits_{0 \le i < j \le n} {\sum {{C_i}{C_j}} } $$ is equal to $${2^{2n - 1}} - {{\left( {2n} \right)!} \over {2{{\left( {n!} \right)}^2}}}$$
IIT-JEE 1983
28
Prove that $${7^{2n}} + \left( {{2^{3n - 3}}} \right)\left( {3n - 1} \right)$$ is divisible by 25 for any natural number $$n$$.
IIT-JEE 1982
29
Given that $${C_1} + 2{C_2}x + 3{C_3}{x^2} + ......... + 2n{C_{2n}}{x^{2n - 1}} = 2n{\left( {1 + x} \right)^{2n - 1}}$$
where $${C_r} = {{\left( {2n} \right)\,!} \over {r!\left( {2n - r} \right)!}}\,\,\,\,\,r = 0,1,2,\,............,2n$$
Prove that $${C_1}^2 - 2{C_2}^2 + 3{C_3}^2 - ............ - 2n{C_{2n}}^2 = {\left( { - 1} \right)^n}n{C_n}.$$
IIT-JEE 1979

Fill in the Blanks

EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12