1
IIT-JEE 2003
Subjective
+2
-0
Prove that
$${2^k}\left( {\matrix{ n \cr 0 \cr } } \right)\left( {\matrix{ n \cr k \cr } } \right) - {2^{^{k - 1}\left( {\matrix{ n \cr 2 \cr } } \right)}}\left( {\matrix{ n \cr 1 \cr } } \right)\left( {\matrix{ {n - 1} \cr {k - 1} \cr } } \right)$$
$$ + {2^{k - 2}}\left( {\matrix{ {n - 2} \cr {k - 2} \cr } } \right) - .....{\left( { - 1} \right)^k}\left( {\matrix{ n \cr k \cr } } \right)\left( {\matrix{ {n - k} \cr 0 \cr } } \right) = {\left( {\matrix{ n \cr k \cr } } \right)^ \cdot }$$
2
IIT-JEE 2002
Subjective
+5
-0
Use mathematical induction to show that
$${\left( {25} \right)^{n + 1}} - 24n + 5735$$ is divisible by $${\left( {24} \right)^2}$$ for all $$ = n = 1,2,...$$
3
IIT-JEE 2000
Subjective
+6
-0
For every possitive integer $$n$$, prove that
$$\sqrt {\left( {4n + 1} \right)} < \sqrt n + \sqrt {n + 1} < \sqrt {4n + 2}.$$
Hence or otherwise, prove that $$\left[ {\sqrt n + \sqrt {\left( {n + 1} \right)} } \right] = \left[ {\sqrt {4n + 1} \,\,} \right],$$
where $$\left[ x \right]$$ denotes the gratest integer not exceeding $$x$$.
4
IIT-JEE 2000
Subjective
+6
-0
For any positive integer $$m$$, $$n$$ (with $$n \ge m$$), let $$\left( {\matrix{ n \cr m \cr } } \right) = {}^n{C_m}$$
Prove that $$\left( {\matrix{ n \cr m \cr } } \right) + \left( {\matrix{ {n - 1} \cr m \cr } } \right) + \left( {\matrix{ {n - 2} \cr m \cr } } \right) + ........ + \left( {\matrix{ m \cr m \cr } } \right) = \left( {\matrix{ {n + 1} \cr {m + 2} \cr } } \right)$$

Hence or otherwise, prove that $$\left( {\matrix{ n \cr m \cr } } \right) + 2\left( {\matrix{ {n - 1} \cr m \cr } } \right) + 3\left( {\matrix{ {n - 2} \cr m \cr } } \right) + ........ + \left( {n - m + 1} \right)\left( {\matrix{ m \cr m \cr } } \right) = \left( {\matrix{ {n + 2} \cr {m + 2} \cr } } \right).$$.

JEE Advanced Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12