1
IIT-JEE 2003
Subjective
+2
-0
Prove that
$${2^k}\left( {\matrix{ n \cr 0 \cr } } \right)\left( {\matrix{ n \cr k \cr } } \right) - {2^{^{k - 1}\left( {\matrix{ n \cr 2 \cr } } \right)}}\left( {\matrix{ n \cr 1 \cr } } \right)\left( {\matrix{ {n - 1} \cr {k - 1} \cr } } \right)$$
$$+ {2^{k - 2}}\left( {\matrix{ {n - 2} \cr {k - 2} \cr } } \right) - .....{\left( { - 1} \right)^k}\left( {\matrix{ n \cr k \cr } } \right)\left( {\matrix{ {n - k} \cr 0 \cr } } \right) = {\left( {\matrix{ n \cr k \cr } } \right)^ \cdot }$$
2
IIT-JEE 2002
Subjective
+5
-0
Use mathematical induction to show that
$${\left( {25} \right)^{n + 1}} - 24n + 5735$$ is divisible by $${\left( {24} \right)^2}$$ for all $$= n = 1,2,...$$
3
IIT-JEE 2000
Subjective
+6
-0
For any positive integer $$m$$, $$n$$ (with $$n \ge m$$), let $$\left( {\matrix{ n \cr m \cr } } \right) = {}^n{C_m}$$
Prove that $$\left( {\matrix{ n \cr m \cr } } \right) + \left( {\matrix{ {n - 1} \cr m \cr } } \right) + \left( {\matrix{ {n - 2} \cr m \cr } } \right) + ........ + \left( {\matrix{ m \cr m \cr } } \right) = \left( {\matrix{ {n + 1} \cr {m + 2} \cr } } \right)$$

Hence or otherwise, prove that $$\left( {\matrix{ n \cr m \cr } } \right) + 2\left( {\matrix{ {n - 1} \cr m \cr } } \right) + 3\left( {\matrix{ {n - 2} \cr m \cr } } \right) + ........ + \left( {n - m + 1} \right)\left( {\matrix{ m \cr m \cr } } \right) = \left( {\matrix{ {n + 2} \cr {m + 2} \cr } } \right).$$.

4
IIT-JEE 2000
Subjective
+6
-0
For every possitive integer $$n$$, prove that
$$\sqrt {\left( {4n + 1} \right)} < \sqrt n + \sqrt {n + 1} < \sqrt {4n + 2}.$$
Hence or otherwise, prove that $$\left[ {\sqrt n + \sqrt {\left( {n + 1} \right)} } \right] = \left[ {\sqrt {4n + 1} \,\,} \right],$$
where $$\left[ x \right]$$ denotes the gratest integer not exceeding $$x$$.
EXAM MAP
Medical
NEET