MCQ (Single Correct Answer)

1

Let $\frac{\pi}{2} < x < \pi$ be such that $\cot x=\frac{-5}{\sqrt{11}}$. Then

$$ \left(\sin \frac{11 x}{2}\right)(\sin 6 x-\cos 6 x)+\left(\cos \frac{11 x}{2}\right)(\sin 6 x+\cos 6 x) $$

is equal to :

JEE Advanced 2024 Paper 1 Online
2

Consider the following lists :

List-I List-II
(I) $$\left\{x \in\left[-\frac{2 \pi}{3}, \frac{2 \pi}{3}\right]: \cos x+\sin x=1\right\}$$ (P) has two elements
(II) $$\left\{x \in\left[-\frac{5 \pi}{18}, \frac{5 \pi}{18}\right]: \sqrt{3} \tan 3 x=1\right\}$$ (Q) has three elements
(III) $$\left\{x \in\left[-\frac{6 \pi}{5}, \frac{6 \pi}{5}\right]: 2 \cos (2 x)=\sqrt{3}\right\}$$ (R) has four elements
(IV) $$\left\{x \in\left[-\frac{7 \pi}{4}, \frac{7 \pi}{4}\right]: \sin x-\cos x=1\right\}$$ (S) has five elements
(T) has six elements

The correct option is:

JEE Advanced 2022 Paper 1 Online
3
Let f(x) = sin($$\pi $$ cos x) and g(x) = cos(2$$\pi $$ sin x) be two functions defined for x > 0. Define the following sets whose elements are written in the increasing order:

X = {x : f(x) = 0}, Y = {x : f'(x) = 0}

Z = {x : g(x) = 0}, W = {x : g'(x) = 0}

List - I contains the sets X, Y, Z and W. List - II contains some information regarding these sets.

JEE Advanced 2019 Paper 2 Offline Mathematics - Trigonometric Functions & Equations Question 14 English

Which of the following is the only CORRECT combination?
JEE Advanced 2019 Paper 2 Offline
4
Let f(x) = sin($$\pi $$ cos x) and g(x) = cos(2$$\pi $$ sin x) be two functions defined for x > 0. Define the following sets whose elements are written in the increasing order :

X = {x : f(x) = 0}, Y = {x : f'(x) = 0}

Z = {x : g(x) = 0}, W = {x : g'(x) = 0}

List - I contains the sets X, Y, Z and W. List - II contains some information regarding these sets.

JEE Advanced 2019 Paper 2 Offline Mathematics - Trigonometric Functions & Equations Question 13 English
Which of the following combinations is correct?
JEE Advanced 2019 Paper 2 Offline
5
If the triangle PQR varies, then the minimum value of cos(P + Q) + cos(Q + R) + cos(R + P) is
JEE Advanced 2017 Paper 2 Offline
6
The value of

$$\sum\limits_{k = 1}^{13} {{1 \over {\sin \left( {{\pi \over 4} + {{\left( {k - 1} \right)\pi } \over 6}} \right)\sin \left( {{\pi \over 4} + {{k\pi } \over 6}} \right)}}} $$ is equal to
JEE Advanced 2016 Paper 2 Offline
7
Let $$S = \left\{ {x \in \left( { - \pi ,\pi } \right):x \ne 0, \pm {\pi \over 2}} \right\}.$$ The sum of all distinct solutions of the equation $$\sqrt 3 \,\sec x + \cos ec\,x + 2\left( {\tan x - \cot x} \right) = 0$$ in the set S is equal to
JEE Advanced 2016 Paper 1 Offline
8
For $$x \in \left( {0,\pi } \right),$$ the equation $$\sin x + 2\sin 2x - \sin 3x = 3$$ has
JEE Advanced 2014 Paper 2 Offline
9
The number of points in $$\left( { - \infty \,\infty } \right),$$ for which $${x^2} - x\sin x - \cos x = 0,$$ is
JEE Advanced 2013 Paper 1 Offline
10

Let $$P = \{ \theta :\sin \theta - \cos \theta = \sqrt 2 \cos \theta \} $$ and $$Q = \{ \theta :\sin \theta + \cos \theta = \sqrt 2 \sin \theta \} $$ be two sets. Then

IIT-JEE 2011 Paper 1 Offline
11

Match the statements/expressions in Column I with the values given in Column II:

Column I Column II
(A) Root(s) of the expression $$2{\sin ^2}\theta + {\sin ^2}2\theta = 2$$ (P) $${\pi \over 6}$$
(B) Points of discontinuity of the function $$f(x) = \left[ {{{6x} \over \pi }} \right]\cos \left[ {{{3x} \over \pi }} \right]$$, where $$[y]$$ denotes the largest integer less than or equal to y (Q) $${\pi \over 4}$$
(C) Volume of the parallelopiped with its edges represented by the vectors $$\widehat i + \widehat j + \widehat i + 2\widehat j$$ and $$\widehat i + \widehat j + \pi \widehat k$$ (R) $${\pi \over 3}$$
(D) Angle between vectors $$\overrightarrow a $$ and $$\overrightarrow b $$ where $$\overrightarrow a $$, $$\overrightarrow b $$ and $$\overrightarrow c $$ are unit vectors satisfying $$\overrightarrow a + \overrightarrow b + \sqrt 3 \overrightarrow c = \overrightarrow 0 $$ (S) $${\pi \over 2}$$
(T) $$\pi $$

IIT-JEE 2009 Paper 2 Offline
12

Match the Statements/Expressions in Column I with the Statements/Expressions in Column II.

Column I Column II
(A) The minimum value of $${{{x^2} + 2x + 4} \over {x + 2}}$$ is (P) 0
(B) Let A and B be 3 $$\times$$ 3 matrices of real numbers, where A is symmetric, B is skew-symmetric and (A + B) (A $$-$$ B) = (A $$-$$ B) (A + B). If (AB)$$^t$$ = ($$-1$$)$$^k$$ AB, where (AB)$$^t$$ is the transpose of the matrix AB, then the possible values of k are (Q) 1
(C) Let $$a=\log_3\log_3 2$$. An integer k satisfying $$1 < {2^{( - k + 3 - a)}} < 2$$, must be less than (R) 2
(D) If $$\sin \theta = \cos \varphi $$, then the possible values of $${1 \over \pi }\left( {\theta + \varphi - {\pi \over 2}} \right)$$ are (S) 3

IIT-JEE 2008 Paper 2 Offline
13
The number of solutions of the pair of equations $$$\,2{\sin ^2}\theta - \cos 2\theta = 0$$$ $$$2co{s^2}\theta - 3\sin \theta = 0$$$

in the interval $$\left[ {0,2\pi } \right]$$

IIT-JEE 2007
14
Let $$\theta \in \left( {0,{\pi \over 4}} \right)$$ and $${t_1} = {\left( {\tan \theta } \right)^{\tan \theta }},\,\,\,\,{t_2} = \,\,{\left( {\tan \theta } \right)^{\cot \theta }}$$, $${t_3}\, = \,\,{\left( {\cot \theta } \right)^{\tan \theta }}$$ and $${t_4}\, = \,\,{\left( {\cot \theta } \right)^{\cot \theta }},$$then
IIT-JEE 2006
15
The values of $$\theta \in \left( {0,2\pi } \right)$$ for which $$2\,{\sin ^2}\theta - 5\,\sin \theta + 2 > 0,$$ are
IIT-JEE 2006 Screening
16
$$\cos \left( {\alpha - \beta } \right) = 1$$ and $$\,\cos \left( {\alpha + \beta } \right) = 1/e$$ where $$\alpha ,\,\beta \in \left[ { - \pi ,\pi } \right].$$
Paris of $$\alpha ,\,\beta $$ which satisfy both the equations is/are
IIT-JEE 2005 Screening
17
Given both $$\theta $$ and $$\phi $$ are acute angles and $$\sin \,\theta = {1 \over 2},\,$$ $$\cos \,\phi = {1 \over 3},$$ then the value of $$\theta + \phi $$ belongs to
IIT-JEE 2004 Screening
18
The number of integral values of $$k$$ for which the equation $$7\cos x + 5\sin x = 2k + 1$$ has a solution is
IIT-JEE 2002 Screening
19
The maximum value of $$\left( {\cos {\alpha _1}} \right).\left( {\cos {\alpha _2}} \right).....\left( {\cos {\alpha _n}} \right),$$ under the restrictions
$$0 \le {\alpha _1},{\alpha _2},....,{\alpha _n} \le {\pi \over 2}$$ vand $$\left( {\cot {\alpha _1}} \right).\left( {\cot {\alpha _2}} \right)....\left( {\cot {\alpha _n}} \right) = 1$$ is
IIT-JEE 2001 Screening
20
The number of distinct real roots of $$\left| {\matrix{ {\sin x} & {\cos x} & {\cos x} \cr {\cos x} & {\sin x} & {\cos x} \cr {\cos x} & {\cos x} & {\sin x} \cr } } \right|\,$$
$$\, = 0$$ in the interval $$ - {\pi \over 4} \le x \le {\pi \over 4}$$ is
IIT-JEE 2001 Screening
21
If $$\alpha + \beta = \pi /2$$ and $$\beta + \gamma = \alpha ,$$ then $$\tan \,\alpha \,$$ equals
IIT-JEE 2001 Screening
22
Let $$f\left( \theta \right) = \sin \theta \left( {\sin \theta + \sin 3\theta } \right)$$. Then $$f\left( \theta \right)$$ is
IIT-JEE 2000 Screening
23
In a triangle $$PQR,\angle R = \pi /2$$. If $$\,\,\tan \left( {P/2} \right)$$ and $$\tan \left( {Q/2} \right)$$ are the roots of the equation $$a{x^2} + bx + c = 0\left( {a \ne 0} \right)$$ then.
IIT-JEE 1999
24
Which of the following number(s) is /are rational?
IIT-JEE 1998
25
The number of values of $$x\,\,$$ in the interval $$\left[ {0,\,5\pi } \right]$$ satisfying the equation $$3\,{\sin ^2}x - 7\,\sin \,x + 2 = 0$$ is
IIT-JEE 1998
26
$${\sec ^2}\theta = {{4xy} \over {{{\left( {x + y} \right)}^2}}}\,$$ is true if and only if
IIT-JEE 1996
27
$$\,3{\left( {\sin x - \cos x} \right)^4} + 6{\left( {\sin x + \cos x} \right)^2} + 4\left( {{{\sin }^6}x + {{\cos }^6}x} \right) = $$
IIT-JEE 1995 Screening
28
The general values of $$\theta $$ satisfying the equation $$2{\sin ^2}\theta - 3\sin \theta - 2 = 0$$ is
IIT-JEE 1995 Screening
29
The minimum value of the expression $$\sin \,\alpha + \sin \,\beta \, + \sin \,\gamma ,\,$$ where $$\alpha ,\,\beta ,\,\gamma $$ are real numbers satisfying $$\alpha + \beta + \gamma = \pi $$ is
IIT-JEE 1995
30
If $$\omega \,$$ is an imaginary cube root of unity then the value of $$\sin \left\{ {\left( {{\omega ^{10}} + {\omega ^{23}}} \right)\pi - {\pi \over 4}} \right\}$$ is
IIT-JEE 1994
31
Let $$2{\sin ^2}x + 3\sin x - 2 > 0$$ and $${x^2} - x - 2 < 0$$ ($$x$$ is measured in radians). Then $$x$$ lies in the interval
IIT-JEE 1994
32
Let $$0 < x < {\pi \over 4}$$ then $$\left( {\sec 2x - \tan 2x} \right)$$ equals
IIT-JEE 1994
33
Let $$n$$ be a positive integer such that $$\sin {\pi \over {2n}} + \cos {\pi \over {2n}} = {{\sqrt n } \over 2}.$$ Then
IIT-JEE 1994
34
Number of solutions of the equation $$\tan x + \sec x = 2\cos x\,$$ lying in the interval $$\left[ {0,2\pi } \right]$$ is:
IIT-JEE 1993
35
In this questions there are entries in columns 1 and 2. Each entry in column 1 is related to exactly one entry in column 2. Write the correct letter from column 2 against the entry number in column 1 in your answer book.

$${{\sin \,3\alpha } \over {\cos 2\alpha }}$$ is

Column $${\rm I}$$

(A) positive

(B) negative

Column $${\rm I}$$$${\rm I}$$

(p) $$\left( {{{13\pi } \over {48}},{{14\pi } \over {48}}} \right)$$

(q) $$\left( {{{14\pi } \over {48}},\,{{18\pi } \over {48}}} \right)$$

(r) $$\left( {{{18\pi } \over {48}},\,{{23\pi } \over {48}}} \right)$$

(s) $$\left( {0,\,{\pi \over 2}} \right)$$

Options:-

IIT-JEE 1992
36
The equation $$\left( {\cos p - 1} \right){x^2} + \left( {\cos p} \right)x + \sin p = 0\,$$ In the variable x, has real roots. Then p can take any value in the interval
IIT-JEE 1990
37
The general solutions of $$\,\sin x - 3\sin 2x + \sin 3x = \cos x - 3\cos 2x + \cos 3x$$ is
IIT-JEE 1989
38
The value of the expression $$\sqrt 3 \,\cos \,ec\,{20^0} - \sec \,{20^0}$$ is equal to
IIT-JEE 1988
39
The number of all possible triplets $$\left( {{a_1},\,{a_2},\,{a_3}} \right)$$ such that $${a_1} + {a_2}\,\,\cos \left( {2x} \right) + {a_3}{\sin ^2}\left( x \right) = 0\,$$ for all $$x$$ is
IIT-JEE 1987
40
The expression $$2\left[ {{{\sin }^6}\left( {{\pi \over 2} + \alpha } \right) + {{\sin }^6}\left( {5\pi - \alpha } \right)} \right]$$ is equal to
IIT-JEE 1986
41
$$\left( {1 + \cos {\pi \over 8}} \right)\left( {1 + \cos {{3\pi } \over 8}} \right)\left( {1 + \cos {{5\pi } \over 8}} \right)\left( {1 + \cos {{7\pi } \over 8}} \right)$$ is equal to
IIT-JEE 1984
42
The general solution of the trigonometric equation sin x+cos x=1 is given by:
IIT-JEE 1981
43
The equation $$\,2{\cos ^2}{x \over 2}{\sin ^2}x = {x^2} + {x^{ - 2}};\,0 < x \le {\pi \over 2}$$ has
IIT-JEE 1980
44
Given $$A = {\sin ^2}\theta + {\cos ^4}\theta $$ then for all real values of $$\theta $$
IIT-JEE 1980
45
If $$\alpha + \beta + \gamma = 2\pi ,$$ then
IIT-JEE 1979
46
If $$\tan \theta = - {4 \over 3},then\sin \theta \,is\,$$
IIT-JEE 1979

Numerical

1
$$ \text { Then the inradius of the triangle } A B C \text { is } $$ :
JEE Advanced 2023 Paper 2 Online
2
Let $\alpha$ and $\beta$ be real numbers such that $-\frac{\pi}{4}<\beta<0<\alpha<\frac{\pi}{4}$.

If $\sin (\alpha+\beta)=\frac{1}{3}$ and $\cos (\alpha-\beta)=\frac{2}{3}$, then the greatest integer less than or equal to

$$ \left(\frac{\sin \alpha}{\cos \beta}+\frac{\cos \beta}{\sin \alpha}+\frac{\cos \alpha}{\sin \beta}+\frac{\sin \beta}{\cos \alpha}\right)^{2} $$ is
JEE Advanced 2022 Paper 2 Online
3
Let f : R $$ \to $$ R be a differentiable function with f(0) = 1 and satisfying the equation f(x + y) = f(x) f'(y) + f'(x) f(y) for all x, y$$ \in $$ R.

Then, the value of loge(f(4)) is ...........
JEE Advanced 2018 Paper 2 Offline
4
The number of distinct solutions of the equation

$${5 \over 4}{\cos ^2}\,2x + {\cos ^4}\,x + {\sin ^4}\,x + {\cos ^6}\,x + {\sin ^6}\,x\, = \,2$$

in the interval $$\left[ {0,\,2\pi } \right]$$ is
JEE Advanced 2015 Paper 1 Offline
5
The positive integer value of $$n\, > \,3$$ satisfying the equation $${1 \over {\sin \left( {{\pi \over n}} \right)}} = {1 \over {\sin \left( {{{2\pi } \over n}} \right)}} + {1 \over {\sin \left( {{{3\pi } \over n}} \right)}}$$ is
IIT-JEE 2011 Paper 1 Offline
6
The number of values of $$\theta $$ in the interval, $$\left( { - {\pi \over 2},\,{\pi \over 2}} \right)$$ such that$$\,\theta \ne {{n\pi } \over 5}$$ for $$n = 0,\, \pm 1,\, \pm 2$$ and $$\tan \,\theta = \cot \,5\theta \,$$ as well as $$\sin \,2\theta = \cos \,4 \theta $$ is
IIT-JEE 2010 Paper 1 Offline
7
The number of all possible values of $$\theta $$ where $$0 < \theta < \pi ,$$ for which the system of equations $$$\left( {y + z} \right)\cos {\mkern 1mu} 3\theta = \left( {xyz} \right){\mkern 1mu} \sin 3\theta $$$ $$$x\sin 3\theta = {{2\cos 3\theta } \over y} + {{2\sin 3\theta } \over z}$$$ $$$\left( {xyz} \right){\mkern 1mu} \sin 3\theta = \left( {y + 2z} \right){\mkern 1mu} \cos 3\theta + y{\mkern 1mu} sin3\theta $$$

have a solution $$\left( {{x_0},{y_0},{z_0}} \right)$$ with $${y_0}{z_0}{\mkern 1mu} \ne {\mkern 1mu} 0,$$ is

IIT-JEE 2010 Paper 1 Offline
8
The maximum value of the expression $${1 \over {{{\sin }^2}\theta + 3\sin \theta \cos \theta + 5{{\cos }^2}\theta }}$$ is
IIT-JEE 2010 Paper 1 Offline
9
Two parallel chords of a circle of radius 2 are at a distance $$\sqrt 3 + 1$$ apart. If the chords subtend at the center , angles of $${\pi \over k}$$ and $${{2\pi } \over k},$$ where$$k > 0,$$ then the value of $$\left[ k \right]$$ is

[Note :[k] denotes the largest integer less than or equal to k ]

IIT-JEE 2010 Paper 2 Offline

MCQ (More than One Correct Answer)

1
Let $P Q R S$ be a quadrilateral in a plane, where

$Q R=1, \angle P Q R=\angle Q R S=70^{\circ}, \angle P Q S=15^{\circ}$ and $\angle P R S=40^{\circ}$.

If $\angle R P S=\theta^{\circ}, P Q=\alpha$ and $P S=\beta$, then the interval(s) that contain(s) the value of

$4 \alpha \beta \sin \theta^{\circ}$ is/are
JEE Advanced 2022 Paper 2 Online
2
For non-negative integers n, let

$$f(n) = {{\sum\limits_{k = 0}^n {\sin \left( {{{k + 1} \over {n + 2}}\pi } \right)} \sin \left( {{{k + 2} \over {n + 2}}\pi } \right)} \over {\sum\limits_{k = 0}^n {{{\sin }^2}\left( {{{k + 1} \over {n + 2}}\pi } \right)} }}$$

Assuming cos$$-1$$ x takes values in [0, $$\pi $$], which of the following options is/are correct?
JEE Advanced 2019 Paper 2 Offline
3
In a $$\Delta $$PQR = 30$$^\circ $$ and the sides PQ and QR have lengths 10$$\sqrt 3 $$ and 10, respectively. Then, which of the following statement(s) is(are) TRUE?
JEE Advanced 2018 Paper 1 Offline
4
Let $$\alpha $$ and $$\beta $$ be non zero real numbers such that $$2(\cos \beta - \cos \alpha ) + \cos \alpha \cos \beta = 1$$. Then which of the following is/are true?
JEE Advanced 2017 Paper 2 Offline
5
Let $$f\left( x \right) = x\sin \,\pi x,\,x > 0.$$ Then for all natural numbers $$n,\,f'\left( x \right)$$ vanishes at
JEE Advanced 2013 Paper 1 Offline
6
Let $$\theta ,\,\varphi \, \in \,\left[ {0,2\pi } \right]$$ be such that
$$2\cos \theta \left( {1 - \sin \,\varphi } \right) = {\sin ^2}\theta \,\,\left( {\tan {\theta \over 2} + \cot {\theta \over 2}} \right)\cos \varphi - 1,\,\tan \left( {2\pi - \theta } \right) > 0$$ and $$ - 1 < \sin \theta \, < - {{\sqrt 3 } \over 2},$$

then $$\varphi $$ cannot satisfy

IIT-JEE 2012 Paper 1 Offline
7
For $$0 < \theta < {\pi \over 2},$$ the solution (s) of $$$\sum\limits_{m = 1}^6 {\cos ec\,\left( {\theta + {{\left( {m - 1} \right)\pi } \over 4}} \right)\,\cos ec\,\left( {\theta + {{m\pi } \over 4}} \right) = 4\sqrt 2 } $$$ is (are)
IIT-JEE 2009 Paper 2 Offline
8
If $${{{{\sin }^4}x} \over 2} + {{{{\cos }^4}x} \over 3} = {1 \over 5},$$ then
IIT-JEE 2009 Paper 1 Offline
9
For a positive integer $$\,n$$, let
$${f_n}\left( \theta \right) = \left( {\tan {\theta \over 2}} \right)\,\left( {1 + \sec \theta } \right)\,\left( {1 + \sec 2\theta } \right)\,\left( {1 + \sec 4\theta } \right).....\left( {1 + \sec {2^n}\theta } \right).$$ Then
IIT-JEE 1999
10
The values of $$\theta $$ lying between $$\theta = \theta $$ and $$\theta = \pi /2$$ and satisfying the equation

$$\left| {\matrix{ {1 + {{\sin }^2}\theta } & {{{\cos }^2}\theta } & {4\sin 4\theta } \cr {{{\sin }^2}\theta } & {1 + {{\cos }^2}\theta } & {4\sin 4\theta } \cr {{{\sin }^2}\theta } & {{{\cos }^2}\theta } & {1 + 4\sin 4\theta } \cr } } \right| = 0$$ are

IIT-JEE 1988

Subjective

1
Find the range of values of $$\,t$$ for which $$$2\,\sin \,t = {{1 - 2x + 5{x^2}} \over {3{x^2} - 2x - 1}},\,\,\,\,\,t\, \in \,\left[ { - {\pi \over 2},\,{\pi \over 2}} \right].$$$
IIT-JEE 2005
2
In any triangle $$ABC,$$ prove that $$$\cot {A \over 2} + \cot {B \over 2} + \cot {C \over 2} = \cot {A \over 2}\cot {B \over 2}\cot {C \over 2}.$$$
IIT-JEE 2000
3
Prove that $$\tan \,\alpha + 2\tan 2\alpha + 4\tan 4\alpha + 8\cot 8\alpha = \cot \alpha $$
IIT-JEE 1998
4
Prove that the values of the function $${{\sin x\cos 3x} \over {\sin 3x\cos x}}$$ do not lie between $${1 \over 3}$$ and 3 for any real $$x.$$
IIT-JEE 1997
5
Prove that $$\sum\limits_{k = 1}^{n - 1} {\left( {n - k} \right)\,\cos \,{{2k\pi } \over n} = - {n \over 2},} $$ where $$n \ge 3$$ is an integer.
IIT-JEE 1997
6
Find all values of $$\theta $$ in the interval $$\left( { - {\pi \over 2},{\pi \over 2}} \right)$$ satisfying the equation $$\left( {1 - \tan \,\theta } \right)\left( {1 + \tan \,\theta } \right)\,\,{\sec ^2}\theta + \,\,{2^{{{\tan }^2}\theta }} = 0.$$
IIT-JEE 1996
7
Find the smallest positive number $$p$$ for which the equation $$\cos \left( {p\,\sin x} \right) = \sin \left( {p\cos x} \right)$$ has a solution $$x\, \in \,\left[ {0,2\pi } \right]$$.
IIT-JEE 1995
8
Determine the smallest positive value of number $$x$$ (in degrees) for which $$$\tan \left( {x + {{100}^ \circ }} \right) = \tan \left( {x + {{50}^ \circ }} \right)\,\tan \left( x \right)\tan \left( {x - {{50}^ \circ }} \right).$$$
IIT-JEE 1993
9
Show that the value of $${{\tan x} \over {\tan 3x}},$$ wherever defined never lies between $${1 \over 3}$$ and 3.
IIT-JEE 1992
10
If $$\exp \,\,\,\left\{ {\left( {\left( {{{\sin }^2}x + {{\sin }^4}x + {{\sin }^6}x + \,\,\,..............\infty } \right)\,In\,\,2} \right)} \right\}$$ satiesfies the equation $${x^2} - 9x + 8 = 0,$$ find the value of $${{\cos x} \over {\cos x + \sin x}},\,0 < x < {\pi \over 2}.$$
IIT-JEE 1991
11
$$ABC$$ is a triangle such that $$$\sin \left( {2A + B} \right) = \sin \left( {C - A} \right) = \, - \sin \left( {B + 2C} \right) = {1 \over 2}.$$$

If $$A,\,B$$ and $$C$$ are in arithmetic progression, determine the values of $$A,\,B$$ and $$C$$.

IIT-JEE 1990
12
Find the values of $$x \in \left( { - \pi , + \pi } \right)$$ which satisfy the equation $${g^{(1 + \left| {\cos x} \right| + \left| {{{\cos }^2}x} \right| + \left| {{{\cos }^3}x} \right| + ...)}} = {4^3}$$
IIT-JEE 1984
13
Find all solutions of $$4{\cos ^2}\,x\sin x - 2{\sin ^2}x = 3\sin x$$
IIT-JEE 1983
14
Show that $$$16\cos \left( {{{2\pi } \over {15}}} \right)\cos \left( {{{4\pi } \over {15}}} \right)\cos \left( {{{8\pi } \over {15}}} \right)\cos \left( {{{16\pi } \over {15}}} \right) = 1$$$
IIT-JEE 1983
15
Without using tables, prove that $$\left( {\sin \,{{12}^ \circ }} \right)\left( {\sin \,{{48}^ \circ }} \right)\left( {\sin \,{{54}^ \circ }} \right) = {1 \over 8}.$$
IIT-JEE 1982
16
Given $$A = \left\{ {x:{\pi \over 6} \le x \le {\pi \over 3}} \right\}$$ and
$$f\left( x \right) = \cos x - x\left( {1 + x} \right);$$ find $$f\left( A \right).$$
IIT-JEE 1980
17
Given $$\alpha + \beta - \gamma = \pi ,$$ prove that
$$\,{\sin ^2}\alpha + {\sin ^2}\beta - {\sin ^2}\gamma = 2\sin \alpha {\mkern 1mu} \sin \beta {\mkern 1mu} \cos y$$
IIT-JEE 1980
18
For all $$\theta $$ in $$\left[ {0,\,\pi /2} \right]$$ show that, $$\cos \left( {\sin \theta } \right) \ge \,\sin \,\left( {\cos \theta } \right).$$
IIT-JEE 1980
19
(a) Draw the graph of $$y = {1 \over {\sqrt 2 }}\left( {cinx + \cos x} \right)$$ from $$x = - {\pi \over 2}$$ to $$x = {\pi \over 2}$$.

(b) If $$\cos \left( {\alpha + \beta } \right) = {4 \over 5},\,\,\sin \,\left( {\alpha - \beta } \right) = \,{5 \over {13}},$$ and $$\alpha ,\,\beta $$ lies between 0 and $${\pi \over 4}$$, find tan2$$\alpha $$.

IIT-JEE 1979
20
If $$\tan \alpha = {m \over {m + 1}}\,$$ and $$\tan \beta = {2 \over {2m + 1}},$$ find the possible values of $$\left( {\alpha + \beta } \right).$$
IIT-JEE 1978

Fill in the Blanks

1
The real roots of the equation $$\,{\cos ^7}x + {\sin ^4}x = 1$$ in the interval $$\left( { - \pi ,\pi } \right)$$ are ...., ...., and ______.
IIT-JEE 1997
2
General value of $$\theta $$ satisfying the equation $${\tan ^2}\theta + \sec \,2\,\theta = 1$$ is _________.
IIT-JEE 1996
3
If $$A > 0,B > 0\,$$ and $$A + B = \pi /3,$$ then the maximum value of tan A tan B is _______.
IIT-JEE 1993
4
If $$K = \sin \left( {\pi /18} \right)\sin \left( {5\pi /18} \right)\sin \left( {7\pi /18} \right),$$ then the numerical value of K is ______.
IIT-JEE 1993
5
The value of
$$\sin {\pi \over {14}}\sin {{3\pi } \over {14}}\sin {{5\pi } \over {14}}\sin {{7\pi } \over {14}}\sin {{9\pi } \over {14}}\sin {{11\pi } \over {14}}\sin {{13\pi } \over {14}}$$ is equal to ______.
IIT-JEE 1991
6
The solution set of the system of equations $$X + Y = {{2\pi } \over 3},$$ $$cox\,x + cos\,y = {3 \over 2},$$ where x and y are real, is _____.
IIT-JEE 1987
7
The set of all $$x$$ in the interval $$\left[ {0,\,\pi } \right]$$ for which $$2\,{\sin ^2}x - 3$$ $$\sin x + 1 \ge 0,$$ is _____.
IIT-JEE 1987
8
The sides of a triangle inscribed in a given circle subtend angles $$\alpha $$, $$\beta $$ and $$\gamma $$ at the centre. The minimum value of the arithmetic mean of $$cos\left[ {\alpha + {\pi \over 2}} \right],\,\cos \left[ {\beta + {\pi \over 2}} \right]$$ and $$cos\left[ {\gamma + {\pi \over 2}} \right]$$ is equal to _______.
IIT-JEE 1987
9
Suppose $${\sin ^3}\,x\sin 3x = \sum\limits_{m = 0}^n {{C_m}\cos \,mx} $$ is an identity in x, where C0, C1 ,....Cn are constants, and $${C_n} \ne 0$$ , then the value of n is _____.
IIT-JEE 1981

True or False

EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12