Trigonometric Functions & Equations · Mathematics · JEE Advanced
MCQ (Single Correct Answer)
Let $\frac{\pi}{2} < x < \pi$ be such that $\cot x=\frac{-5}{\sqrt{11}}$. Then
$$ \left(\sin \frac{11 x}{2}\right)(\sin 6 x-\cos 6 x)+\left(\cos \frac{11 x}{2}\right)(\sin 6 x+\cos 6 x) $$
is equal to :
Consider the following lists :
List-I | List-II |
---|---|
(I) $$\left\{x \in\left[-\frac{2 \pi}{3}, \frac{2 \pi}{3}\right]: \cos x+\sin x=1\right\}$$ | (P) has two elements |
(II) $$\left\{x \in\left[-\frac{5 \pi}{18}, \frac{5 \pi}{18}\right]: \sqrt{3} \tan 3 x=1\right\}$$ | (Q) has three elements |
(III) $$\left\{x \in\left[-\frac{6 \pi}{5}, \frac{6 \pi}{5}\right]: 2 \cos (2 x)=\sqrt{3}\right\}$$ | (R) has four elements |
(IV) $$\left\{x \in\left[-\frac{7 \pi}{4}, \frac{7 \pi}{4}\right]: \sin x-\cos x=1\right\}$$ | (S) has five elements |
(T) has six elements |
The correct option is:
X = {x : f(x) = 0}, Y = {x : f'(x) = 0}
Z = {x : g(x) = 0}, W = {x : g'(x) = 0}
List - I contains the sets X, Y, Z and W. List - II contains some information regarding these sets.

Which of the following is the only CORRECT combination?
X = {x : f(x) = 0}, Y = {x : f'(x) = 0}
Z = {x : g(x) = 0}, W = {x : g'(x) = 0}
List - I contains the sets X, Y, Z and W. List - II contains some information regarding these sets.

Which of the following combinations is correct?
$$\sum\limits_{k = 1}^{13} {{1 \over {\sin \left( {{\pi \over 4} + {{\left( {k - 1} \right)\pi } \over 6}} \right)\sin \left( {{\pi \over 4} + {{k\pi } \over 6}} \right)}}} $$ is equal to
Let $$P = \{ \theta :\sin \theta - \cos \theta = \sqrt 2 \cos \theta \} $$ and $$Q = \{ \theta :\sin \theta + \cos \theta = \sqrt 2 \sin \theta \} $$ be two sets. Then
Match the statements/expressions in Column I with the values given in Column II:
Column I | Column II | ||
---|---|---|---|
(A) | Root(s) of the expression $$2{\sin ^2}\theta + {\sin ^2}2\theta = 2$$ | (P) | $${\pi \over 6}$$ |
(B) | Points of discontinuity of the function $$f(x) = \left[ {{{6x} \over \pi }} \right]\cos \left[ {{{3x} \over \pi }} \right]$$, where $$[y]$$ denotes the largest integer less than or equal to y | (Q) | $${\pi \over 4}$$ |
(C) | Volume of the parallelopiped with its edges represented by the vectors $$\widehat i + \widehat j + \widehat i + 2\widehat j$$ and $$\widehat i + \widehat j + \pi \widehat k$$ | (R) | $${\pi \over 3}$$ |
(D) | Angle between vectors $$\overrightarrow a $$ and $$\overrightarrow b $$ where $$\overrightarrow a $$, $$\overrightarrow b $$ and $$\overrightarrow c $$ are unit vectors satisfying $$\overrightarrow a + \overrightarrow b + \sqrt 3 \overrightarrow c = \overrightarrow 0 $$ | (S) | $${\pi \over 2}$$ |
(T) | $$\pi $$ |
Match the Statements/Expressions in Column I with the Statements/Expressions in Column II.
Column I | Column II | ||
---|---|---|---|
(A) | The minimum value of $${{{x^2} + 2x + 4} \over {x + 2}}$$ is | (P) | 0 |
(B) | Let A and B be 3 $$\times$$ 3 matrices of real numbers, where A is symmetric, B is skew-symmetric and (A + B) (A $$-$$ B) = (A $$-$$ B) (A + B). If (AB)$$^t$$ = ($$-1$$)$$^k$$ AB, where (AB)$$^t$$ is the transpose of the matrix AB, then the possible values of k are | (Q) | 1 |
(C) | Let $$a=\log_3\log_3 2$$. An integer k satisfying $$1 < {2^{( - k + 3 - a)}} < 2$$, must be less than | (R) | 2 |
(D) | If $$\sin \theta = \cos \varphi $$, then the possible values of $${1 \over \pi }\left( {\theta + \varphi - {\pi \over 2}} \right)$$ are | (S) | 3 |
in the interval $$\left[ {0,2\pi } \right]$$
Paris of $$\alpha ,\,\beta $$ which satisfy both the equations is/are
$$0 \le {\alpha _1},{\alpha _2},....,{\alpha _n} \le {\pi \over 2}$$ vand $$\left( {\cot {\alpha _1}} \right).\left( {\cot {\alpha _2}} \right)....\left( {\cot {\alpha _n}} \right) = 1$$ is
$$\, = 0$$ in the interval $$ - {\pi \over 4} \le x \le {\pi \over 4}$$ is
$${{\sin \,3\alpha } \over {\cos 2\alpha }}$$ is
Column $${\rm I}$$
(A) positive
(B) negative
Column $${\rm I}$$$${\rm I}$$
(p) $$\left( {{{13\pi } \over {48}},{{14\pi } \over {48}}} \right)$$
(q) $$\left( {{{14\pi } \over {48}},\,{{18\pi } \over {48}}} \right)$$
(r) $$\left( {{{18\pi } \over {48}},\,{{23\pi } \over {48}}} \right)$$
(s) $$\left( {0,\,{\pi \over 2}} \right)$$
Options:-
Numerical
If $\sin (\alpha+\beta)=\frac{1}{3}$ and $\cos (\alpha-\beta)=\frac{2}{3}$, then the greatest integer less than or equal to
$$ \left(\frac{\sin \alpha}{\cos \beta}+\frac{\cos \beta}{\sin \alpha}+\frac{\cos \alpha}{\sin \beta}+\frac{\sin \beta}{\cos \alpha}\right)^{2} $$ is
Then, the value of loge(f(4)) is ...........
$${5 \over 4}{\cos ^2}\,2x + {\cos ^4}\,x + {\sin ^4}\,x + {\cos ^6}\,x + {\sin ^6}\,x\, = \,2$$
in the interval $$\left[ {0,\,2\pi } \right]$$ is
have a solution $$\left( {{x_0},{y_0},{z_0}} \right)$$ with $${y_0}{z_0}{\mkern 1mu} \ne {\mkern 1mu} 0,$$ is
[Note :[k] denotes the largest integer less than or equal to k ]
MCQ (More than One Correct Answer)
$Q R=1, \angle P Q R=\angle Q R S=70^{\circ}, \angle P Q S=15^{\circ}$ and $\angle P R S=40^{\circ}$.
If $\angle R P S=\theta^{\circ}, P Q=\alpha$ and $P S=\beta$, then the interval(s) that contain(s) the value of
$4 \alpha \beta \sin \theta^{\circ}$ is/are
$$f(n) = {{\sum\limits_{k = 0}^n {\sin \left( {{{k + 1} \over {n + 2}}\pi } \right)} \sin \left( {{{k + 2} \over {n + 2}}\pi } \right)} \over {\sum\limits_{k = 0}^n {{{\sin }^2}\left( {{{k + 1} \over {n + 2}}\pi } \right)} }}$$
Assuming cos$$-1$$ x takes values in [0, $$\pi $$], which of the following options is/are correct?
$$2\cos \theta \left( {1 - \sin \,\varphi } \right) = {\sin ^2}\theta \,\,\left( {\tan {\theta \over 2} + \cot {\theta \over 2}} \right)\cos \varphi - 1,\,\tan \left( {2\pi - \theta } \right) > 0$$ and $$ - 1 < \sin \theta \, < - {{\sqrt 3 } \over 2},$$
then $$\varphi $$ cannot satisfy
$${f_n}\left( \theta \right) = \left( {\tan {\theta \over 2}} \right)\,\left( {1 + \sec \theta } \right)\,\left( {1 + \sec 2\theta } \right)\,\left( {1 + \sec 4\theta } \right).....\left( {1 + \sec {2^n}\theta } \right).$$ Then
$$\left| {\matrix{ {1 + {{\sin }^2}\theta } & {{{\cos }^2}\theta } & {4\sin 4\theta } \cr {{{\sin }^2}\theta } & {1 + {{\cos }^2}\theta } & {4\sin 4\theta } \cr {{{\sin }^2}\theta } & {{{\cos }^2}\theta } & {1 + 4\sin 4\theta } \cr } } \right| = 0$$ are
Subjective
If $$A,\,B$$ and $$C$$ are in arithmetic progression, determine the values of $$A,\,B$$ and $$C$$.
$$f\left( x \right) = \cos x - x\left( {1 + x} \right);$$ find $$f\left( A \right).$$
$$\,{\sin ^2}\alpha + {\sin ^2}\beta - {\sin ^2}\gamma = 2\sin \alpha {\mkern 1mu} \sin \beta {\mkern 1mu} \cos y$$
(b) If $$\cos \left( {\alpha + \beta } \right) = {4 \over 5},\,\,\sin \,\left( {\alpha - \beta } \right) = \,{5 \over {13}},$$ and $$\alpha ,\,\beta $$ lies between 0 and $${\pi \over 4}$$, find tan2$$\alpha $$.
Fill in the Blanks
$$\sin {\pi \over {14}}\sin {{3\pi } \over {14}}\sin {{5\pi } \over {14}}\sin {{7\pi } \over {14}}\sin {{9\pi } \over {14}}\sin {{11\pi } \over {14}}\sin {{13\pi } \over {14}}$$ is equal to ______.