Circle · Mathematics · JEE Advanced
MCQ (Single Correct Answer)
Let the straight line $y=2 x$ touch a circle with center $(0, \alpha), \alpha>0$, and radius $r$ at a point $A_1$. Let $B_1$ be the point on the circle such that the line segment $A_1 B_1$ is a diameter of the circle. Let $\alpha+r=5+\sqrt{5}$.
Match each entry in List-I to the correct entry in List-II.
List-I | List-II |
---|---|
(P) $\alpha$ equals | (1) $(-2, 4)$ |
(Q) $r$ equals | (2) $\sqrt{5}$ |
(R) $A_1$ equals | (3) $(-2, 6)$ |
(S) $B_1$ equals | (4) $5$ |
(5) $(2, 4)$ |
The correct option is
Let E1E2 and F1F2 be the chords of S passing through the point P0 (1, 1) and parallel to the X-axis and the Y-axis, respectively. Let G1G2 be the chord of S passing through P0 and having slope$$-$$1. Let the tangents to S at E1 and E2 meet at E3, then tangents to S at F1 and F2 meet at F3, and the tangents to S at G1 and G2 meet at G3. Then, the points E3, F3 and G3 lie on the curve
A possible equation of L is
A common tangent of the two circles is
$${x^2}\, + \,{y^2}\, - \,6x\, - 4y\, - 11 = 0$$
touch the circle at the points A and B. The equation of the cirumcircle of the triangle PAB is
$$\,{L_1}:\,\,2x\,\, + \,\,3y\, + \,p\,\, - \,\,3 = 0$$
$$\,{L_2}:\,\,2x\,\, + \,\,3y\, + \,p\,\, + \,\,3 = 0$$
where p is a real number, and $$\,C:\,{x^2}\, + \,{y^2}\, + \,6x\, - 10y\, + \,30 = 0$$
STATEMENT-1 : If line $${L_1}$$ is a chord of circle C, then line $${L_2}$$ is not always a diameter of circle C
and
STATEMENT-2 : If line $${L_1}$$ is a diameter of circle C, then line $${L_2}$$ is not a chord of circle C.
Equations of the sides QR, RP are
The equation of circle C is
Points E and F are given by
A line L' through A is drawn parallel to BD. Point S moves such that its distances from the BD and the vertex A are equal. If locus of S cuts L' at $$T_2$$ and $$T_3$$ and AC at $$T_1$$, then area of $$\Delta \,{T_1}\,{T_2}\,{T_3}$$ is
If P is any point of $${C_1}$$ and Q is another point on $${C_2}$$, then
$${{P{A^2}\, + \,P{B^2}\, + P{C^2}\, + P{D^2}} \over {Q{A^2} + \,Q{B^2}\, + Q{C^2}\, + Q{D^2}}}$$ is equal to
If a circle is such that it touches the line L and the circle $$C_1$$ externally, such that both the circles are on the same side of the line, then the locus of centre of the circle is
The equation of the locus of the point P is
Numerical
The radius of the circle C is ___________.
The value of $$\alpha$$ is ___________.
If $$S = \left\{ {\left( {2,\,{3 \over 4}} \right),\,\left( {{5 \over 2},\,{3 \over 4}} \right),\,\left( {{1 \over 4} - \,{1 \over 4}} \right),\,\left( {{1 \over 8},\,{1 \over 4}} \right)} \right\}$$ then the number of points (s) in S lying inside the smaller part is