MCQ (Single Correct Answer)

1

Consider the ellipse $\frac{x^2}{9}+\frac{y^2}{4}=1$. Let $S(p, q)$ be a point in the first quadrant such that $\frac{p^2}{9}+\frac{q^2}{4}>1$. Two tangents are drawn from $S$ to the ellipse, of which one meets the ellipse at one end point of the minor axis and the other meets the ellipse at a point $T$ in the fourth quadrant. Let $R$ be the vertex of the ellipse with positive $x$-coordinate and $O$ be the center of the ellipse. If the area of the triangle $\triangle O R T$ is $\frac{3}{2}$, then which of the following options is correct?

JEE Advanced 2024 Paper 1 Online
2

Consider the ellipse

$$$ \frac{x^{2}}{4}+\frac{y^{2}}{3}=1 $$$

Let $H(\alpha, 0), 0<\alpha<2$, be a point. A straight line drawn through $H$ parallel to the $y$-axis crosses the ellipse and its auxiliary circle at points $E$ and $F$ respectively, in the first quadrant. The tangent to the ellipse at the point $E$ intersects the positive $x$-axis at a point $G$. Suppose the straight line joining $F$ and the origin makes an angle $\phi$ with the positive $x$-axis.

List-I List-II
(I) If $\phi=\frac{\pi}{4}$, then the area of the triangle $F G H$ is (P) $\frac{(\sqrt{3}-1)^{4}}{8}$
(II) If $\phi=\frac{\pi}{3}$, then the area of the triangle $F G H$ is (Q) 1
(III) If $\phi=\frac{\pi}{6}$, then the area of the triangle $F G H$ is (R) $\frac{3}{4}$
(IV) If $\phi=\frac{\pi}{12}$, then the area of the triangle $F G H$ is (S) $\frac{1}{2 \sqrt{3}}$
(T) $\frac{3 \sqrt{3}}{2}$

The correct option is:

JEE Advanced 2022 Paper 1 Online
3
Let S be the circle in the XY-plane defined the equation x2 + y2 = 4.

Let P be a point on the circle S with both coordinates being positive. Let the tangent to S at P intersect the coordinate axes at the points M and N. Then, the mid-point of the line segment MN must lie on the curve
JEE Advanced 2018 Paper 1 Offline
4
Let $${F_1}\left( {{x_1},0} \right)$$ and $${F_2}\left( {{x_2},0} \right)$$ for $${{x_1} < 0}$$ and $${{x_2} > 0}$$, be the foci of the ellipse $${{{x^2}} \over 9} + {{{y^2}} \over 8} = 1$$. Suppose a parabola having vertex at the origin and focus at $${F_2}$$ intersects the ellipse at point $$M$$ in the first quadrant and at point $$N$$ in the fourth quadrant.

The orthocentre of the triangle $${F_1}MN$$ is

JEE Advanced 2016 Paper 2 Offline
5
Let $${F_1}\left( {{x_1},0} \right)$$ and $${F_2}\left( {{x_2},0} \right)$$ for $${{x_1} < 0}$$ and $${{x_2} > 0}$$, be the foci of the ellipse $${{{x^2}} \over 9} + {{{y^2}} \over 8} = 1$$. Suppose a parabola having vertex at the origin and focus at $${F_2}$$ intersects the ellipse at point $$M$$ in the first quadrant and at point $$N$$ in the fourth quadrant.

If the tangents to the ellipse at $$M$$ and $$N$$ meet at $$R$$ and the normal to the parabola at $$M$$ meets the $$x$$-axis at $$Q$$, then the ratio of area of the triangle $$MQR$$ to area of the quadrilateral $$M{F_1}N{F_2}$$is

JEE Advanced 2016 Paper 2 Offline
6
The common tangents to the circle $${x^2} + {y^2} = 2$$ and the parabola $${y^2} = 8x$$ touch the circle at the points $$P, Q$$ and the parabola at the points $$R$$, $$S$$. Then the area of the quadrilateral $$PQRS$$ is
JEE Advanced 2014 Paper 2 Offline
7
The ellipse $${E_1}:{{{x^2}} \over 9} + {{{y^2}} \over 4} = 1$$ is inscribed in a rectangle $$R$$ whose sides are parallel to the coordinate axes. Another ellipse $${E_2}$$ passing through the point $$(0, 4)$$ circumscribes the rectangle $$R$$. The eccentricity of the ellipse $${E_2}$$ is
IIT-JEE 2012 Paper 1 Offline
8

Tangents are drawn from the point $$P(3, 4)$$ to the ellipse $${{{x^2}} \over 9} + {{{y^2}} \over 4} = 1$$ touching the ellipse at points $$A$$ and $$B$$.

The coordinates of $$A$$ and $$B$$ are

IIT-JEE 2010 Paper 2 Offline
9
Tangents are drawn from the point $$P(3, 4)$$ to the ellipse $${{{x^2}} \over 9} + {{{y^2}} \over 4} = 1$$ touching the ellipse at points $$A$$ and $$B$$.

The orthocentre of the triangle $$PAB$$ is

IIT-JEE 2010 Paper 2 Offline
10

Tangents are drawn from the point $$P(3, 4)$$ to the ellipse $${{{x^2}} \over 9} + {{{y^2}} \over 4} = 1$$ touching the ellipse at points $$A$$ and $$B$$.

The equation of the locus of the point whose distances from the point $$P$$ and the line $$AB$$ are equal, is

IIT-JEE 2010 Paper 2 Offline
11
The normal at a point $$P$$ on the ellipse $${x^2} + 4{y^2} = 16$$ meets the $$x$$- axis $$Q$$. If $$M$$ is the mid point of the line segment $$PQ$$, then the locus of $$M$$ intersects the latus rectums of the given ellipse at the points
IIT-JEE 2009 Paper 2 Offline
12

Match the conics in Column I with the statements/expressions in Column II :

Column I Column II
(A) Circle (P) The locus of the point ($$h,k$$) for which the line $$hx+ky=1$$ touches the circle $$x^2+y^2=4$$.
(B) Parabola (Q) Points z in the complex plane satisfying $$|z+2|-|z-2|=\pm3$$.
(C) Ellipse (R) Points of the conic have parametric representation $$x = \sqrt 3 \left( {{{1 - {t^2}} \over {1 + {t^2}}}} \right),y = {{2t} \over {1 + {t^2}}}$$
(D) Hyperbola (S) The eccentricity of the conic lies in the interval $$1 \le x \le \infty $$.
(T) Points z in the complex plane satisfying $${\mathop{\rm Re}\nolimits} {(z + 1)^2} = |z{|^2} + 1$$.

IIT-JEE 2009 Paper 1 Offline
13
The line passing through the extremity $$A$$ of the major axis and extremity $$B$$ of the minor axis of the ellipse $${x^2} + 9{y^2} = 9$$ meets its auxiliary circle at the point $$M$$. Then the area of the triangle with vertices at $$A$$, $$M$$ and the origin $$O$$ is
IIT-JEE 2009 Paper 1 Offline
14
Consider the two curves $${C_1}:{y^2} = 4x,\,{C_2}:{x^2} + {y^2} - 6x + 1 = 0$$. Then,
IIT-JEE 2008 Paper 1 Offline
15
The minimum area of triangle formed by the tangent to the $${{{x^2}} \over {{a^2}}} + {{{y^2}} \over {{b^2}}} = 1$$ and coordinate axes is
IIT-JEE 2005 Screening
16
If tangents are drawn to the ellipse $${x^2} + 2{y^2} = 2,$$ then the locus of the mid-point of the intercept made by the tangents between the coordinate axes is
IIT-JEE 2004 Screening
17
The area of the quadrilateral formed by the tangents at the end points of latus rectum to the ellipse $${{{x^2}} \over 9} + {{{y^2}} \over 5} = 1,$$ is
IIT-JEE 2003 Screening
18
If $$P=(x, y)$$, $${F_1} = \left( {3,0} \right),\,{F_2} = \left( { - 3,0} \right)$$ and $$16{x^2} + 25{y^2} = 400,$$ then $$P{F_1} + P{F_2}$$ equals
IIT-JEE 1998
19
The number of values of $$c$$ such that the straight line $$y=4x + c$$ touches the curve $$\left( {{x^2}/4} \right) + {y^2} = 1$$ is
IIT-JEE 1998
20
The radius of the circle passing through the foci of the ellipse $${{{x^2}} \over {16}} + {{{y^2}} \over 9} = 1$$, and having its centre at $$(0, 3)$$ is
IIT-JEE 1995 Screening
21
The equation $$2{x^2} + 3{y^2} - 8x - 18y + 35 = k$$ represents
IIT-JEE 1994
22
Let $$E$$ be the ellipse $${{{x^2}} \over 9} + {{{y^2}} \over 4} = 1$$ and $$C$$ be the circle $${x^2} + {y^2} = 9$$. Let $$P$$ and $$Q$$ be the points $$(1, 2)$$ and $$(2, 1)$$ respectively. Then
IIT-JEE 1994

MCQ (More than One Correct Answer)

1
Let $T_1$ and $T_2$ be two distinct common tangents to the ellipse $E: \frac{x^2}{6}+\frac{y^2}{3}=1$ and the parabola $P: y^2=12 x$. Suppose that the tangent $T_1$ touches $P$ and $E$ at the points $A_1$ and $A_2$, respectively and the tangent $T_2$ touches $P$ and $E$ at the points $A_4$ and $A_3$, respectively. Then which of the following statements is(are) true?
JEE Advanced 2023 Paper 1 Online
2
Define the collections {E1, E2, E3, ...} of ellipses and {R1, R2, R3.....} of rectangles as follows :

$${E_1}:{{{x^2}} \over 9} + {{{y^2}} \over 4} = 1$$

R1 : rectangle of largest area, with sides parallel to the axes, inscribed in E1;

En : ellipse $${{{x^2}} \over {a_n^2}} + {{{y^2}} \over {b_n^2}} = 1$$ of the largest area inscribed in $${R_{n - 1}},n > 1$$;

Rn : rectangle of largest area, with sides parallel to the axes, inscribed in En, n > 1.

Then which of the following options is/are correct?
JEE Advanced 2019 Paper 1 Offline
3
Consider two straight lines, each of which is tangent to both the circle x2 + y2 = (1/2) and the parabola y2 = 4x. Let these lines intersect at the point Q. Consider the ellipse whose centre is at the origin O(0, 0) and whose semi-major axis is OQ. If the length of the minor axis of this ellipse is $$\sqrt 2 $$, then which of the following statement(s) is (are) TRUE?
JEE Advanced 2018 Paper 2 Offline
4
Let $${E_1}$$ and $${E_2}$$ be two ellipses whose centres are at the origin. The major axes of $${E_1}$$ and $${E_2}$$ lie along the $$x$$-axis and the $$y$$-axis, respectively. Let $$S$$ be the circle $${x^2} + {\left( {y - 1} \right)^2} = 2$$. The straight line $$x+y=3$$ touches the curves $$S$$, $${E_1}$$ and $${E_2}$$ at $$P, Q$$ and $$R$$ respectively. Suppose that $$PQ = PR = {{2\sqrt 2 } \over 3}$$. If $${e_1}$$ and $${e_2}$$ are the eccentricities of $${E_1}$$ and $${E_2}$$, respectively, then the correct expression(s) is (are)
JEE Advanced 2015 Paper 2 Offline
5
An ellipse intersects the hyperbola $$2{x^2} - 2{y^2} = 1$$ orthogonally. The eccentricity of the ellipse is reciprocal of that of the hyperbola. If the axes of the ellipse are along the coordinate axes then
IIT-JEE 2009 Paper 2 Offline
6
In a triangle $$ABC$$ with fixed base $$BC$$, the vertex $$A$$ moves such that $$$\cos \,B + \cos \,C = 4{\sin ^2}{A \over 2}.$$$

If $$a, b$$ and $$c$$ denote the lengths of the sides of the triangle opposite to the angles $$A, B$$ and $$C$$, respectively, then

IIT-JEE 2009 Paper 1 Offline
7
Let $$P\left( {{x_1},{y_1}} \right)$$ and $$Q\left( {{x_2},{y_2}} \right),{y_1} < 0,{y_2} < 0,$$ be the end points of the latus rectum of the ellipse $${x^2} + 4{y^2} = 4.$$ The equations of parabolas with latus rectum $$PQ$$ are :
IIT-JEE 2008 Paper 1 Offline
8
On the ellipse $$4{x^2} + 9{y^2} = 1,$$ the points at which the tangents are parallel to the line $$8x = 9y$$ are
IIT-JEE 1999

Numerical

Subjective

1
Find the equation of the common tangent in $${1^{st}}$$ quadrant to the circle $${x^2} + {y^2} = 16$$ and the ellipse $${{{x^2}} \over {25}} + {{{y^2}} \over 4} = 1$$. Also find the length of the intercept of the tangent between the coordinate axes.
IIT-JEE 2005
2
Prove that, in an ellipse, the perpendicular from a focus upon any tangent and the line joining the centre of the ellipse to the point of contact meet on the corresponding directrix.
IIT-JEE 2002
3
Let $$P$$ be a point on the ellipse $${{{x^2}} \over {{a^2}}} + {{{y^2}} \over {{b^2}}} = 1,0 < b < a$$. Let the line parallel to $$y$$-axis passing through $$P$$ meet the circle $${x^2} + {y^2} = {a^2}$$ at the point $$Q$$ such that $$P$$ and $$Q$$ are on the same side of $$x$$-axis. For two positive real numbers $$r$$ and $$s$$, find the locus of the point $$R$$ on $$PQ$$ such that $$PR$$ : $$RQ = r: s$$ as $$P$$ varies over the ellipse.
IIT-JEE 2001
4
Let $$ABC$$ be an equilateral triangle inscribed in the circle $${x^2} + {y^2} = {a^2}$$. Suppose perpendiculars from $$A, B, C$$ to the major axis of the ellipse $$x.{{{x^2}} \over {{a^2}}} + {{{y^2}} \over {{b^2}}} = 1$$, $$(a>b)$$ meets the ellipse respectively, at $$P, Q, R$$. so that $$P, Q, R$$ lie on the same side of the major axis as $$A, B, C$$ respectively. Prove that the normals to the ellipse drawn at the points $$P, Q$$ and $$R$$ are concurrent.
IIT-JEE 2000
5
Find the co-ordinates of all the points $$P$$ on the ellipse $${{{x^2}} \over {{a^2}}} + {{{y^2}} \over {{b^2}}} = 1$$, for which the area of the triangle $$PON$$ is maximum, where $$O$$ denotes the origin and $$N$$, the foot of the perpendicular from $$O$$ to the tangent at $$P$$.
IIT-JEE 1999
6
Consider the family of circles $${x^2} + {y^2} = {r^2},\,\,2 < r < 5$$. If in the first quadrant, the common taingent to a circle of this family and the ellipse $$4{x^2} + 25{y^2} = 100$$ meets the co-ordinate axes at $$A$$ and $$B$$, then find the equation of the locus of vthe mid-point of $$AB$$.
IIT-JEE 1999
7
A tangent to the ellipse x2 + 4y2 = 4 meets the ellipse x2 + 2y2 = 6 at P and Q. Prove that the tangents at P and Q of the ellipse x2 + 2y2 = 6 are at right angles.
IIT-JEE 1997
8
Let '$$d$$' be the perpendicular distance from the centre of the ellipse $${{{x^2}} \over {{a^2}}} + {{{y^2}} \over {{b^2}}} = 1$$ to the tangent drawn at a point $$P$$ on the ellipse. If $${F_1}$$ and $${F_2}$$ are the two foci of the ellipse, then show that $${\left( {P{F_1} - P{F_2}} \right)^2} = 4{a^2}\left( {1 - {{{b^2}} \over {{d^2}}}} \right)$$.
IIT-JEE 1995

Fill in the Blanks

EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12