Prove by induction on, that $${p_n} = A{\alpha ^n} + B{\beta ^n}$$ for all $$n \ge 1,$$ where $$\alpha $$ and $$\beta $$ are the roots of quadratic equation $${x^2} - \left( {1 - p} \right)x - p\left( {1 - p} \right) = 0$$ and $$A = {{{p^2} + \beta - 1} \over {\alpha \beta - {\alpha ^2}}},B = {{{p^2} + \alpha - 1} \over {\alpha \beta - {\beta ^2}}}.$$
for each non-be gatuve integer $$m \le n.$$ $$\,\left( {Here\left( {\matrix{ p \cr q \cr } } \right) = {}^p{C_q}} \right).$$
[Hint: You may use the fact that $${\left( {1 + x} \right)^{\left( {m + 1} \right)p}} = {\left( {1 + x} \right)^p}{\left( {1 + x} \right)^{mp}}$$]
where $$ \ge 1$$ is a natural number. {You may use the fact that $$p\sin x + \left( {1 - p} \right)\sin y \le \sin \left[ {px + \left( {1 - p} \right)y} \right],$$ where $$0 \le p \le 1$$ and $$0 \le x,y \le \pi .$$}