1
GATE ECE 2016 Set 1
MCQ (Single Correct Answer)
+1
-0.3
Consider the following statements for a metal oxide semiconductor field effect transistor
(MOSFET):
P: As channel length reduces, OFF-state current increases.
Q:As channel length reduces, output resistance increases.
R: As channel length reduces, threshold voltage remains constant.
S: As channel length reduces, ON current increases.
2
GATE ECE 2016 Set 1
MCQ (Single Correct Answer)
+1
-0.3
What is the voltage Vout in the following circuit?
3
GATE ECE 2016 Set 3
MCQ (Single Correct Answer)
+1
-0.3
The figure shows the band diagram of a Metal Oxide Semiconductor (MOS). The surface region of
this MOS is in
4
GATE ECE 2016 Set 2
MCQ (Single Correct Answer)
+1
-0.3
Transistor geometries in a CMOS inverter have been adjusted to meet the requirement for
worst case charge and discharge times for driving a load capacitor C. This design is to be
converted to that of a NOR circuit in the same technology, so that its worst case charge and
discharge times while driving the same capacitor are similar. The channel lengths of all
transistors are to be kept unchanged. Which one of the following statements is correct?
Questions Asked from IC Basics and MOSFET (Marks 1)
Number in Brackets after Paper Indicates No. of Questions
GATE ECE 2023 (1)
GATE ECE 2017 Set 2 (3)
GATE ECE 2016 Set 1 (2)
GATE ECE 2016 Set 3 (1)
GATE ECE 2016 Set 2 (2)
GATE ECE 2015 Set 3 (1)
GATE ECE 2014 Set 1 (3)
GATE ECE 2014 Set 3 (1)
GATE ECE 2014 Set 2 (1)
GATE ECE 2013 (2)
GATE ECE 2012 (1)
GATE ECE 2011 (1)
GATE ECE 2008 (2)
GATE ECE 2005 (1)
GATE ECE 2004 (1)
GATE ECE 1994 (1)
GATE ECE Subjects
Network Theory
Control Systems
Electronic Devices and VLSI
Analog Circuits
Digital Circuits
Microprocessors
Signals and Systems
Representation of Continuous Time Signal Fourier Series Fourier Transform Continuous Time Signal Laplace Transform Discrete Time Signal Fourier Series Fourier Transform Discrete Fourier Transform and Fast Fourier Transform Discrete Time Signal Z Transform Continuous Time Linear Invariant System Discrete Time Linear Time Invariant Systems Transmission of Signal Through Continuous Time LTI Systems Sampling Transmission of Signal Through Discrete Time Lti Systems Miscellaneous
Communications
Electromagnetics
General Aptitude