1
IIT-JEE 2002 Screening
MCQ (Single Correct Answer)
+3
-0.75
The integral $$\int\limits_{ - 1/2}^{1/2} {\left( {\left[ x \right] + \ell n\left( {{{1 + x} \over {1 - x}}} \right)} \right)dx}$$ equal to
A
$$- {1 \over 2}$$
B
$$0$$
C
$$1$$
D
$$2\ell n\left( {{1 \over 2}} \right)$$
2
IIT-JEE 2002 Screening
MCQ (Single Correct Answer)
+3
-0.75
Let $$f\left( x \right) = \int\limits_1^x {\sqrt {2 - {t^2}} \,dt.}$$ Then the real roots of the equation
$${x^2} - f'\left( x \right) = 0$$ are
A
$$\pm 1$$
B
$$\pm {1 \over {\sqrt 2 }}$$
C
$$\pm {1 \over 2}$$
D
$$0$$ and $$1$$
3
IIT-JEE 2002 Screening
MCQ (Single Correct Answer)
+3
-0.75
Let $$T>0$$ be a fixed real number . Suppose $$f$$ is a continuous
function such that for all $$x \in R$$, $$f\left( {x + T} \right) = f\left( x \right)$$.

If $$I = \int\limits_0^T {f\left( x \right)dx}$$ then the value of $$\int\limits_3^{3 + 3T} {f\left( {2x} \right)dx}$$ is

A
$$3/2I$$
B
$$2I$$
C
$$3I$$
D
$$6I$$
4
IIT-JEE 2002 Screening
MCQ (Single Correct Answer)
+3
-0.75
Let $$T>0$$ be a fixed real number . Suppose $$f$$ is a continuous
function such that for all $$x \in R$$, $$f\left( {x + T} \right) = f\left( x \right)$$.

If $$I = \int\limits_0^T {f\left( x \right)dx}$$ then the value of $$\int\limits_3^{3 + 3T} {f\left( {2x} \right)dx}$$ is

A
$$3/2I$$
B
$$2I$$
C
$$3I$$
D
$$6I$$
JEE Advanced Subjects
Physics
Mechanics
Electricity
Optics
Modern Physics
Chemistry
Physical Chemistry
Inorganic Chemistry
Organic Chemistry
Mathematics
Algebra
Trigonometry
Coordinate Geometry
Calculus
EXAM MAP
Joint Entrance Examination
JEE MainJEE AdvancedWB JEEBITSATMHT CET
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Â© ExamGOAL 2023