1
IIT-JEE 2002 Screening
+3
-0.75
Let $$T>0$$ be a fixed real number . Suppose $$f$$ is a continuous
function such that for all $$x \in R$$, $$f\left( {x + T} \right) = f\left( x \right)$$.

If $$I = \int\limits_0^T {f\left( x \right)dx}$$ then the value of $$\int\limits_3^{3 + 3T} {f\left( {2x} \right)dx}$$ is

A
$$3/2I$$
B
$$2I$$
C
$$3I$$
D
$$6I$$
2
IIT-JEE 2002 Screening
+3
-0.75
Let $$T>0$$ be a fixed real number . Suppose $$f$$ is a continuous
function such that for all $$x \in R$$, $$f\left( {x + T} \right) = f\left( x \right)$$.

If $$I = \int\limits_0^T {f\left( x \right)dx}$$ then the value of $$\int\limits_3^{3 + 3T} {f\left( {2x} \right)dx}$$ is

A
$$3/2I$$
B
$$2I$$
C
$$3I$$
D
$$6I$$
3
IIT-JEE 2001 Screening
+3
-0.75
The value of $$\int\limits_{ - \pi }^\pi {{{{{\cos }^2}x} \over {1 + {a^x}}}dx,\,a > 0,}$$ is
A
$$\pi$$
B
$$a\pi$$
C
$$\pi /2$$
D
$$2\pi$$
4
IIT-JEE 2000 Screening
+2
-0.5
Let $$g\left( x \right) = \int\limits_0^x {f\left( t \right)dt,}$$ where f is such that
$${1 \over 2} \le f\left( t \right) \le 1,$$ for $$t \in \left[ {0,1} \right]$$ and $$\,0 \le f\left( t \right) \le {1 \over 2},$$ for $$t \in \left[ {1,2} \right]$$.
Then $$g(2)$$ satisfies the inequality
A
$$- {3 \over 2} \le g\left( 2 \right) < {1 \over 2}$$
B
$$0 \le g\left( 2 \right) < 2$$
C
$${3 \over 2} < g\left( 2 \right) \le {5 \over 2}$$
D
$$2 < g\left( 2 \right) < 4$$
EXAM MAP
Medical
NEET