NEW
New Website Launch
Experience the best way to solve previous year questions with mock tests (very detailed analysis), bookmark your favourite questions, practice etc...
1

JEE Advanced 2013 Paper 1 Offline

MCQ (Single Correct Answer)
Let $$f$$ $$:\,\,\left[ {{1 \over 2},1} \right] \to R$$ (the set of all real number) be a positive,
non-constant and differentiable function such that
$$f'\left( x \right) < 2f\left( x \right)$$ and $$f\left( {{1 \over 2}} \right) = 1.$$ Then the value of $$\int\limits_{1/2}^1 {f\left( x \right)} \,dx$$ lies in the interval
A
$$\left( {2e - 1,2e} \right)$$
B
$$\left( {e - 1,\,2e - 1} \right)$$
C
$$\left( {{{e - 1} \over 2},e - 1} \right)$$
D
$$\left( {0,{{e - 1} \over 2}} \right)$$
2

JEE Advanced 2013 Paper 1 Offline

MCQ (Single Correct Answer)
The area enclosed by the curves $$y = \sin x + {\mathop{\rm cosx}\nolimits} $$ and $$y = \left| {\cos x - \sin x} \right|$$ over the interval $$\left[ {0,{\pi \over 2}} \right]$$ is
A
$$4\left( {\sqrt 2 - 1} \right)$$
B
$$2\sqrt 2 \left( {\sqrt 2 - 1} \right)$$
C
$$2\left( {\sqrt 2 + 1} \right)$$
D
$$2\sqrt 2 \left( {\sqrt 2 + 1} \right)$$
3

IIT-JEE 2012 Paper 2 Offline

MCQ (Single Correct Answer)
The value of the integral $$\int\limits_{ - \pi /2}^{\pi /2} {\left( {{x^2} + 1n{{\pi + x} \over {\pi - x}}} \right)\cos xdx} $$ is
A
$$0$$
B
$${{{\pi ^2}} \over 2} - 4$$
C
$${{{\pi ^2}} \over 2} + 4$$
D
$${{{\pi ^2}} \over 2}$$
4

IIT-JEE 2011 Paper 2 Offline

MCQ (Single Correct Answer)
Let f $$:$$$$\left[ { - 1,2} \right] \to \left[ {0,\infty } \right]$$ be a continuous function such that
$$f\left( x \right) = f\left( {1 - x} \right)$$ for all $$x \in \left[ { - 1,2} \right]$$

Let $${R_1} = \int\limits_{ - 1}^2 {xf\left( x \right)dx,} $$ and $${R_2}$$ be the area of the region bounded by $$y=f(x),$$ $$x=-1,$$ $$x=2,$$ and the $$x$$-axis. Then

A
$${R_1} = 2{R_2}$$
B
$${R_1} = 3{R_2}$$
C
$${2R_1} = {R_2}$$
D
$${3R_1} = {R_2}$$

Explanation

$${R_1} = \int\limits_{ - 1}^2 {xf(x)dx = \int\limits_{ - 1}^2 {(2 - 1 - x)f(2 - 1 - x)dx} } $$

$$ = \int\limits_{ - 1}^2 {(1 - x)f(1 - x)dx = \int\limits_{ - 1}^2 {(1 - x)f(x)dx} } $$

Hence, $$2{R_1} = \int\limits_{ - 1}^2 {f(x)dx = {R_2}} $$.

Joint Entrance Examination

JEE Main JEE Advanced WB JEE

Graduate Aptitude Test in Engineering

GATE CSE GATE ECE GATE EE GATE ME GATE CE GATE PI GATE IN

Medical

NEET

CBSE

Class 12