NEW
New Website Launch
Experience the best way to solve previous year questions with mock tests (very detailed analysis), bookmark your favourite questions, practice etc...
1

### IIT-JEE 2000 Screening

Let $$g\left( x \right) = \int\limits_0^x {f\left( t \right)dt,}$$ where f is such that
$${1 \over 2} \le f\left( t \right) \le 1,$$ for $$t \in \left[ {0,1} \right]$$ and $$\,0 \le f\left( t \right) \le {1 \over 2},$$ for $$t \in \left[ {1,2} \right]$$.
Then $$g(2)$$ satisfies the inequality
A
$$- {3 \over 2} \le g\left( 2 \right) < {1 \over 2}$$
B
$$0 \le g\left( 2 \right) < 2$$
C
$${3 \over 2} < g\left( 2 \right) \le {5 \over 2}$$
D
$$2 < g\left( 2 \right) < 4$$
2

### IIT-JEE 2000 Screening

If $$f\left( x \right) = \left\{ {\matrix{ {{e^{\cos x}}\sin x,} & {for\,\,\left| x \right| \le 2} \cr {2,} & {otherwise,} \cr } } \right.$$ then $$\int\limits_{ - 2}^3 {f\left( x \right)dx = }$$
A
$$0$$
B
$$1$$
C
$$2$$
D
$$3$$
3

### IIT-JEE 1999

$$\int\limits_{\pi /4}^{3\pi /4} {{{dx} \over {1 + \cos x}}}$$ is equal to
A
$$2$$
B
$$-2$$
C
$$1/2$$
D
$$-1/2$$
4

### IIT-JEE 1999

If for a real number $$y$$, $$\left[ y \right]$$ is the greatest integer less than or
equal to $$y$$, then the value of the integral $$\int\limits_{\pi /2}^{3\pi /2} {\left[ {2\sin x} \right]dx}$$ is
A
$$- \pi$$
B
$$0$$
C
$$- \pi /2$$
D
$$\pi /2$$

### Joint Entrance Examination

JEE Main JEE Advanced WB JEE

### Graduate Aptitude Test in Engineering

GATE CSE GATE ECE GATE EE GATE ME GATE CE GATE PI GATE IN

NEET

Class 12