1
IIT-JEE 2001 Screening
MCQ (Single Correct Answer)
+3
-0.75
The value of $$\int\limits_{ - \pi }^\pi {{{{{\cos }^2}x} \over {1 + {a^x}}}dx,\,a > 0,} $$ is
A
$$\pi $$
B
$$a\pi $$
C
$$\pi /2$$
D
$$2\pi $$
2
IIT-JEE 2000 Screening
MCQ (Single Correct Answer)
+3
-0.75
If $$f\left( x \right) = \left\{ {\matrix{ {{e^{\cos x}}\sin x,} & {for\,\,\left| x \right| \le 2} \cr {2,} & {otherwise,} \cr } } \right.$$ then $$\int\limits_{ - 2}^3 {f\left( x \right)dx = } $$
A
$$0$$
B
$$1$$
C
$$2$$
D
$$3$$
3
IIT-JEE 2000 Screening
MCQ (Single Correct Answer)
+3
-0.75
The value of the integral $$\int\limits_{{e^{ - 1}}}^{{e^2}} {\left| {{{{{\log }_e}x} \over x}} \right|dx} $$ is :
A
$$3/2$$
B
$$5/2$$
C
$$3$$
D
$$5$$
4
IIT-JEE 2000 Screening
MCQ (Single Correct Answer)
+2
-0.5
Let $$g\left( x \right) = \int\limits_0^x {f\left( t \right)dt,} $$ where f is such that
$${1 \over 2} \le f\left( t \right) \le 1,$$ for $$t \in \left[ {0,1} \right]$$ and $$\,0 \le f\left( t \right) \le {1 \over 2},$$ for $$t \in \left[ {1,2} \right]$$.
Then $$g(2)$$ satisfies the inequality
A
$$ - {3 \over 2} \le g\left( 2 \right) < {1 \over 2}$$
B
$$0 \le g\left( 2 \right) < 2$$
C
$${3 \over 2} < g\left( 2 \right) \le {5 \over 2}$$
D
$$2 < g\left( 2 \right) < 4$$
JEE Advanced Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12