1
IIT-JEE 2010 Paper 1 Offline
MCQ (Single Correct Answer)
+4
-1
The value of $$\mathop {\lim }\limits_{x \to 0} {1 \over {{x^3}}}\int\limits_0^x {{{t\ln \left( {1 + t} \right)} \over {{t^4} + 4}}} dt$$ is
A
$$0$$
B
$${1 \over 12}$$
C
$${1 \over 24}$$
D
$${1 \over 64}$$
2
IIT-JEE 2010 Paper 1 Offline
MCQ (Single Correct Answer)
+4
-1
The value of $$\int\limits_0^1 {{{{x^4}{{\left( {1 - x} \right)}^4}} \over {1 + {x^2}}}dx} $$ is (are)
A
$${{22} \over 7} - \pi $$
B
$${2 \over {105}}$$
C
$$0$$
D
$${{71} \over {15}} - {{3\pi } \over 2}$$
3
IIT-JEE 2008 Paper 2 Offline
MCQ (Single Correct Answer)
+4
-1
Consider the function $$f:\left( { - \infty ,\infty } \right) \to \left( { - \infty ,\infty } \right)$$ defined by
$$f\left( x \right) = {{{x^2} - ax + 1} \over {{x^2} + ax + 1}},0 < a < 2.$$

Let $$g\left( x \right) = \int\limits_0^{{e^x}} {{{f'\left( t \right)} \over {1 + {t^2}}}} \,dt.$$

Which of the following is true?

A
$$g'(x)$$ is positive on $$\left( { - \infty ,0} \right)$$ and negative on $$\left( {0,\infty } \right)$$
B
$$g'(x)$$ is negative on $$\left( { - \infty ,0} \right)$$ and positive on $$\left( {0,\infty } \right)$$
C
$$g'(x)$$ changes sign on both $$\left( { - \infty ,0} \right)$$ and $$\left( {0,\infty } \right)$$
D
$$g'(x)$$ does not change sign on $$\left( { - \infty ,0} \right)$$
4
IIT-JEE 2008 Paper 1 Offline
MCQ (Single Correct Answer)
+3
-1

Consider the functions defined implicitly by the equation $$y^3-3y+x=0$$ on various intervals in the real line. If $$x\in(-\infty,-2)\cup(2,\infty)$$, the equation implicitly defines a unique real valued differentiable function $$y=f(x)$$. If $$x\in(-2,2)$$, the equation implicitly defines a unique real valued differentiable function $$y=g(x)$$ satisfying $$g(0)=0$$

$$\int\limits_{ - 1}^1 {g'\left( x \right)dx = } $$

A
$$2g(-1)$$
B
$$0$$
C
$$-2g(1)$$
D
$$2g(1)$$
JEE Advanced Subjects
EXAM MAP