1
IIT-JEE 2010 Paper 1 Offline
MCQ (Single Correct Answer)
+4
-1
The value of $$\mathop {\lim }\limits_{x \to 0} {1 \over {{x^3}}}\int\limits_0^x {{{t\ln \left( {1 + t} \right)} \over {{t^4} + 4}}} dt$$ is
A
$$0$$
B
$${1 \over 12}$$
C
$${1 \over 24}$$
D
$${1 \over 64}$$
2
IIT-JEE 2010 Paper 2 Offline
MCQ (Single Correct Answer)
+4
-1
Let $$f$$ be a real-valued function defined on the interval $$(-1, 1)$$ such that
$${e^{ - x}}f\left( x \right) = 2 + \int\limits_0^x {\sqrt {{t^4} + 1} \,\,dt,} $$ for all $$x \in \left( { - 1,1} \right)$$,
and let $${f^{ - 1}}$$ be the inverse function of $$f$$. Then $$\left( {{f^{ - 1}}} \right)'\left( 2 \right)$$ is equal to
A
$$1$$
B
$${{1 \over 3}}$$
C
$${{1 \over 2}}$$
D
$${{1 \over e}}$$
3
IIT-JEE 2008 Paper 2 Offline
MCQ (Single Correct Answer)
+4
-1
Consider the function $$f:\left( { - \infty ,\infty } \right) \to \left( { - \infty ,\infty } \right)$$ defined by
$$f\left( x \right) = {{{x^2} - ax + 1} \over {{x^2} + ax + 1}},0 < a < 2.$$

Let $$g\left( x \right) = \int\limits_0^{{e^x}} {{{f'\left( t \right)} \over {1 + {t^2}}}} \,dt.$$

Which of the following is true?

A
$$g'(x)$$ is positive on $$\left( { - \infty ,0} \right)$$ and negative on $$\left( {0,\infty } \right)$$
B
$$g'(x)$$ is negative on $$\left( { - \infty ,0} \right)$$ and positive on $$\left( {0,\infty } \right)$$
C
$$g'(x)$$ changes sign on both $$\left( { - \infty ,0} \right)$$ and $$\left( {0,\infty } \right)$$
D
$$g'(x)$$ does not change sign on $$\left( { - \infty ,0} \right)$$
4
IIT-JEE 2008 Paper 1 Offline
MCQ (Single Correct Answer)
+3
-1

Consider the functions defined implicitly by the equation $$y^3-3y+x=0$$ on various intervals in the real line. If $$x\in(-\infty,-2)\cup(2,\infty)$$, the equation implicitly defines a unique real valued differentiable function $$y=f(x)$$. If $$x\in(-2,2)$$, the equation implicitly defines a unique real valued differentiable function $$y=g(x)$$ satisfying $$g(0)=0$$

$$\int\limits_{ - 1}^1 {g'\left( x \right)dx = } $$

A
$$2g(-1)$$
B
$$0$$
C
$$-2g(1)$$
D
$$2g(1)$$
JEE Advanced Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12