Let $$a, b, c$$ be non-zero real numbers such that
$$\int\limits_0^1 {\left( {1 + {{\cos }^8}x} \right)\left( {a{x^2} + bx + c} \right)dx = \int\limits_0^2 {\left( {1 + {{\cos }^8}x} \right)\left( {a{x^2} + bx + c} \right)dx.} } $$
Then the quadratic equation $$a{x^2} + bx + c = 0$$ has
B
at least one root in $$(0, 2)$$
C
a double root in $$(0, 2)$$