1
IIT-JEE 2010 Paper 2 Offline
MCQ (Single Correct Answer)
+4
-1
Let $$f$$ be a real-valued function defined on the interval $$(-1, 1)$$ such that
$${e^{ - x}}f\left( x \right) = 2 + \int\limits_0^x {\sqrt {{t^4} + 1} \,\,dt,} $$ for all $$x \in \left( { - 1,1} \right)$$,
and let $${f^{ - 1}}$$ be the inverse function of $$f$$. Then $$\left( {{f^{ - 1}}} \right)'\left( 2 \right)$$ is equal to
$${e^{ - x}}f\left( x \right) = 2 + \int\limits_0^x {\sqrt {{t^4} + 1} \,\,dt,} $$ for all $$x \in \left( { - 1,1} \right)$$,
and let $${f^{ - 1}}$$ be the inverse function of $$f$$. Then $$\left( {{f^{ - 1}}} \right)'\left( 2 \right)$$ is equal to
2
IIT-JEE 2008 Paper 2 Offline
MCQ (Single Correct Answer)
+4
-1
Consider the function $$f:\left( { - \infty ,\infty } \right) \to \left( { - \infty ,\infty } \right)$$ defined by
$$f\left( x \right) = {{{x^2} - ax + 1} \over {{x^2} + ax + 1}},0 < a < 2.$$
$$f\left( x \right) = {{{x^2} - ax + 1} \over {{x^2} + ax + 1}},0 < a < 2.$$
Let $$g\left( x \right) = \int\limits_0^{{e^x}} {{{f'\left( t \right)} \over {1 + {t^2}}}} \,dt.$$
Which of the following is true?
3
IIT-JEE 2008 Paper 1 Offline
MCQ (Single Correct Answer)
+3
-1
Consider the functions defined implicitly by the equation $$y^3-3y+x=0$$ on various intervals in the real line. If $$x\in(-\infty,-2)\cup(2,\infty)$$, the equation implicitly defines a unique real valued differentiable function $$y=f(x)$$. If $$x\in(-2,2)$$, the equation implicitly defines a unique real valued differentiable function $$y=g(x)$$ satisfying $$g(0)=0$$
$$\int\limits_{ - 1}^1 {g'\left( x \right)dx = } $$
4
IIT-JEE 2006
MCQ (Single Correct Answer)
+5
-1.25
Let the definite integral be defined by the formula
$$\int\limits_a^b {f\left( x \right)dx = {{b - a} \over 2}\left( {f\left( a \right) + f\left( b \right)} \right).} $$ For more accurate result for
$$c \in \left( {a,b} \right),$$ we can use $$\int\limits_a^b {f\left( x \right)dx = \int\limits_a^c {f\left( x \right)dx + \int\limits_c^b {f\left( x \right)dx = F\left( c \right)} } } $$ so
that for $$c = {{a + b} \over 2},$$ we get $$\int\limits_a^b {f\left( x \right)dx = {{b - a} \over 4}\left( {f\left( a \right) + f\left( b \right) + 2f\left( c \right)} \right).} $$
$$\int\limits_a^b {f\left( x \right)dx = {{b - a} \over 2}\left( {f\left( a \right) + f\left( b \right)} \right).} $$ For more accurate result for
$$c \in \left( {a,b} \right),$$ we can use $$\int\limits_a^b {f\left( x \right)dx = \int\limits_a^c {f\left( x \right)dx + \int\limits_c^b {f\left( x \right)dx = F\left( c \right)} } } $$ so
that for $$c = {{a + b} \over 2},$$ we get $$\int\limits_a^b {f\left( x \right)dx = {{b - a} \over 4}\left( {f\left( a \right) + f\left( b \right) + 2f\left( c \right)} \right).} $$
$$\int\limits_0^{\pi /2} {\sin x\,dx = } $$
JEE Advanced Prep Made Easy
Chapter-wise, Topic-wise, Paper-wise Previous Year Questions
Full Mock Tests
Personalized Mock Tests
Very Detailed Test Analysis
Save Important Questions
Set and Achieve Daily Goals
Plans start at ₹25 per month, and no payment information is
required to try our
trial.
Questions Asked from Definite Integration (MCQ (Single Correct Answer))
Number in Brackets after Paper Indicates No. of Questions
JEE Advanced 2023 Paper 1 Online (1)
JEE Advanced 2021 Paper 2 Online (2)
JEE Advanced 2016 Paper 2 Offline (1)
JEE Advanced 2015 Paper 2 Offline (1)
JEE Advanced 2014 Paper 2 Offline (4)
JEE Advanced 2013 Paper 1 Offline (1)
IIT-JEE 2012 Paper 2 Offline (1)
IIT-JEE 2011 Paper 1 Offline (1)
IIT-JEE 2010 Paper 1 Offline (2)
IIT-JEE 2010 Paper 2 Offline (1)
IIT-JEE 2008 Paper 2 Offline (1)
IIT-JEE 2008 Paper 1 Offline (1)
IIT-JEE 2006 (3)
IIT-JEE 2005 Screening (1)
IIT-JEE 2004 Screening (2)
IIT-JEE 2003 Screening (2)
IIT-JEE 2002 Screening (3)
IIT-JEE 2001 Screening (1)
IIT-JEE 2000 Screening (3)
IIT-JEE 1999 (2)
IIT-JEE 1998 (2)
IIT-JEE 1995 Screening (2)
IIT-JEE 1993 (1)
IIT-JEE 1990 (1)
IIT-JEE 1985 (1)
IIT-JEE 1983 (1)
IIT-JEE 1981 (2)
JEE Advanced Subjects
Physics
Mechanics
Units & MeasurementsMotionLaws of MotionWork Power & EnergyImpulse & MomentumRotational MotionProperties of MatterHeat and ThermodynamicsSimple Harmonic MotionWavesGravitation
Electricity
ElectrostaticsCurrent ElectricityCapacitorMagnetismElectromagnetic InductionAlternating CurrentElectromagnetic Waves
Optics
Modern Physics
Chemistry
Physical Chemistry
Some Basic Concepts of ChemistryStructure of AtomRedox ReactionsGaseous StateChemical EquilibriumIonic EquilibriumSolutionsThermodynamicsChemical Kinetics and Nuclear ChemistryElectrochemistrySolid StateSurface Chemistry
Inorganic Chemistry
Periodic Table & PeriodicityChemical Bonding & Molecular StructureIsolation of ElementsHydrogens-Block Elementsp-Block Elementsd and f Block ElementsCoordination CompoundsSalt Analysis
Organic Chemistry
Mathematics
Algebra
Quadratic Equation and InequalitiesSequences and SeriesMathematical Induction and Binomial TheoremMatrices and DeterminantsPermutations and CombinationsProbabilityVector Algebra3D GeometryStatisticsComplex Numbers
Trigonometry
Coordinate Geometry
Calculus