NEW
New Website Launch
Experience the best way to solve previous year questions with mock tests (very detailed analysis), bookmark your favourite questions, practice etc...
1

### JEE Advanced 2015 Paper 2 Offline

Let $$f'\left( x \right) = {{192{x^3}} \over {2 + {{\sin }^4}\,\pi x}}$$ for all $$x \in R\,\,$$ with $$f\left( {{1 \over 2}} \right) = 0$$.
If $$m \le \int\limits_{1/2}^1 {f\left( x \right)dx \le M,}$$ then the possible values of $$m$$ and $$M$$ are
A
$$m=13,$$ $$M=24$$
B
$$\,m = {1 \over 4},M = {1 \over 2}$$
C
$$m=-11,$$ $$M=0$$
D
$$m=1,$$ $$M=12$$

## Explanation

We have, $$f'(x) = {{192{x^3}} \over {2 + {{\sin }^4}\pi x}}$$

Given, $$f\left( {{1 \over 2}} \right) = 0$$ and $$m \le \int\limits_{1/2}^1 {f(x)dx \le m}$$

$$\therefore$$ f(x) is increasing in $$\left( {{1 \over 2},1} \right)$$.

$$\therefore$$ $$f'{(x)_{\max }} = {{192} \over {24}} = 96$$

$$\Rightarrow 96 = {{f(1) - f(1/2)} \over {1/2}} \Rightarrow f(1) = 96 \times {1 \over 2} = 48$$

$$M = {1 \over 2} \times {1 \over 2} \times 48 = 12$$

$$f'{(x)_{\min .}} = {{\left( {{{192} \over 8}} \right)} \over 3} = {{192} \over {24}}$$

$$\Rightarrow {{192} \over {24}} = {{f(1) - 0} \over {(1/2)}} \Rightarrow f(1) = {{192} \over {24}} \times {1 \over 2}$$

$$\therefore$$ $$m = {1 \over 2} \times {1 \over 2} \times {{192} \over {24}} \times {1 \over 2} = 1$$

2

### JEE Advanced 2014 Paper 2 Offline

Given that for each $$a \in \left( {0,1} \right),\,\,\,\mathop {\lim }\limits_{h \to {0^ + }} \,\int\limits_h^{1 - h} {{t^{ - a}}{{\left( {1 - t} \right)}^{a - 1}}dt}$$ exists. Let this limit be $$g(a).$$ In addition, it is given that the function $$g(a)$$ is differentiable on $$(0,1).$$

The value of $$g\left( {{1 \over 2}} \right)$$ is

A
$$\pi$$
B
$$2\pi$$
C
$${\pi \over 2}$$
D
$${\pi \over 4}$$
3

### JEE Advanced 2014 Paper 2 Offline

Given that for each $$a \in \left( {0,1} \right),\,\,\,\mathop {\lim }\limits_{h \to {0^ + }} \,\int\limits_h^{1 - h} {{t^{ - a}}{{\left( {1 - t} \right)}^{a - 1}}dt}$$ exists. Let this limit be $$g(a).$$ In addition, it is given that the function $$g(a)$$ is differentiable on $$(0,1).$$

The value of $$g'\left( {{1 \over 2}} \right)$$ is

A
$${\pi \over 2}$$
B
$$\pi$$
C
$$-{\pi \over 2}$$
D
$$0$$
4

### JEE Advanced 2014 Paper 2 Offline

List - $$I$$
P.$$\,\,\,\,$$ The number of polynomials $$f(x)$$ with non-negative integer coefficients of degree $$\le 2$$, satisfying $$f(0)=0$$ and $$\int_0^1 {f\left( x \right)dx = 1,}$$ is
Q.$$\,\,\,\,$$ The number of points in the interval $$\left[ { - \sqrt {13} ,\sqrt {13} } \right]$$
at which $$f\left( x \right) = \sin \left( {{x^2}} \right) + \cos \left( {{x^2}} \right)$$ attains its maximum value, is
R.$$\,\,\,\,$$ $$\int\limits_{ - 2}^2 {{{3{x^2}} \over {\left( {1 + {e^x}} \right)}}dx}$$ equals
S.$$\,\,\,\,$$ $${{\left( {\int\limits_{ - {1 \over 2}}^{{1 \over 2}} {\cos 2x\log \left( {{{1 + x} \over {1 - x}}} \right)dx} } \right)} \over {\left( {\int\limits_0^{{1 \over 2}} {\cos 2x\log \left( {{{1 + x} \over {1 - x}}} \right)dx} } \right)}}$$

List $$II$$
1.$$\,\,\,\,$$ $$8$$
2.$$\,\,\,\,$$ $$2$$
3.$$\,\,\,\,$$ $$4$$
4.$$\,\,\,\,$$ $$0$$

A
$$P = 3,Q = 2,R = 4,S = 1$$
B
$$P = 2,Q = 3,R = 4,S = 1$$
C
$$P = 3,Q = 2,R = 1,S = 4$$
D
$$P = 2,Q = 3,R = 1,S = 4$$

### Joint Entrance Examination

JEE Main JEE Advanced WB JEE

### Graduate Aptitude Test in Engineering

GATE CSE GATE ECE GATE EE GATE ME GATE CE GATE PI GATE IN

NEET

Class 12