NEW
New Website Launch
Experience the best way to solve previous year questions with mock tests (very detailed analysis), bookmark your favourite questions, practice etc...
1

IIT-JEE 1994

MCQ (Single Correct Answer)
The circles $${x^2} + {y^2} - 10x + 16 = 0$$ and $${x^2} + {y^2} = {r^2}$$ intersect each other in two distinct points if
A
r < 2
B
r > 8
C
2 < r < 8
D
$$2 \le r \le 8$$
2

IIT-JEE 1993

MCQ (Single Correct Answer)
The locus of the centre of a circle, which touches externally the circle $${x^2} + {y^2} - 6x - 6y + 14 = 0$$ and also touches the y-axis, is given by the equation:
A
$${x^2} - 6x - 10y + 14 = 0$$
B
$${x^2} - 10x - 6y + 14 = 0$$
C
$${y^2} - 6x - 10y + 14 = 0$$
D
$${y^2} - 10x - 6y + 14 = 0$$
3

IIT-JEE 1992

MCQ (Single Correct Answer)
The centre of a circle passing through the points (0, 0), (1, 0) and touching the circle $${x^2} + {y^2} = 9$$is
A
$$\left( {{3 \over 2},{1 \over 2}} \right)\,$$
B
$$\left( {{1 \over 2},{3 \over 2}} \right)\,$$
C
$$\left( {{1 \over 2},{1 \over 2}} \right)\,$$
D
$$\left( {{1 \over 2}, - {2^{{1 \over 2}}}} \right)\,$$
4

IIT-JEE 1989

MCQ (Single Correct Answer)
The lines 2x - 3y = 5 and 3x - 4y = 7 are diameters of a circle of area 154 sq. units. Then the equation of this circle is
A
$${x^2} + {y^2} + 2x - 2y = 62$$
B
$${x^2} + {y^2} + 2x - 2y = 47$$
C
$${x^2} + {y^2} - 2x + 2y = 47$$
D
$${x^2} + {y^2} - 2x + 2y = 62$$c

Joint Entrance Examination

JEE Main JEE Advanced WB JEE

Graduate Aptitude Test in Engineering

GATE CSE GATE ECE GATE EE GATE ME GATE CE GATE PI GATE IN

Medical

NEET

CBSE

Class 12