1
IIT-JEE 1994
MCQ (Single Correct Answer)
+1
-0.25
The circles $${x^2} + {y^2} - 10x + 16 = 0$$ and $${x^2} + {y^2} = {r^2}$$ intersect each other in two distinct points if
A
r < 2
B
r > 8
C
2 < r < 8
D
$$2 \le r \le 8$$
2
IIT-JEE 1993
MCQ (Single Correct Answer)
+1
-0.25
The locus of the centre of a circle, which touches externally the circle $${x^2} + {y^2} - 6x - 6y + 14 = 0$$ and also touches the y-axis, is given by the equation:
A
$${x^2} - 6x - 10y + 14 = 0$$
B
$${x^2} - 10x - 6y + 14 = 0$$
C
$${y^2} - 6x - 10y + 14 = 0$$
D
$${y^2} - 10x - 6y + 14 = 0$$
3
IIT-JEE 1992
MCQ (Single Correct Answer)
+2
-0.5
The centre of a circle passing through the points (0, 0), (1, 0) and touching the circle $${x^2} + {y^2} = 9$$is
A
$$\left( {{3 \over 2},{1 \over 2}} \right)\,$$
B
$$\left( {{1 \over 2},{3 \over 2}} \right)\,$$
C
$$\left( {{1 \over 2},{1 \over 2}} \right)\,$$
D
$$\left( {{1 \over 2}, - {2^{{1 \over 2}}}} \right)\,$$
4
IIT-JEE 1989
MCQ (Single Correct Answer)
+2
-0.5
The lines 2x - 3y = 5 and 3x - 4y = 7 are diameters of a circle of area 154 sq. units. Then the equation of this circle is
A
$${x^2} + {y^2} + 2x - 2y = 62$$
B
$${x^2} + {y^2} + 2x - 2y = 47$$
C
$${x^2} + {y^2} - 2x + 2y = 47$$
D
$${x^2} + {y^2} - 2x + 2y = 62$$c
JEE Advanced Subjects
EXAM MAP