1
IIT-JEE 2001 Screening
+2
-0.5
Let PQ and RS be tangents at the extremities of the diameter PR of a circle of radius r. If PS and RQ intersect at a point X on the circumference of the circle, then 2r equals
A
$$\sqrt {PQ.\,RS}$$
B
(PQ + RS) / 2
C
2 PQ. RS/(PQ + RS)
D
$$\sqrt {\left( {P{Q^2} + \,R{S^2}} \right)} \,\,/2$$
2
IIT-JEE 2000 Screening
+2
-0.5
The triangle PQR is inscribed in the circle $${x^2}\, + \,\,{y^2} = \,25$$. If Q and R have co-ordinates (3, 4) and ( - 4, 3) respectively, then $$\angle \,Q\,P\,R$$ is equal to
A
$${\pi \over 2}$$
B
$${\pi \over 3}$$
C
$${\pi \over 4}$$
D
$${\pi \over 6}$$
3
IIT-JEE 2000 Screening
+2
-0.5
If the circles $${x^2}\, + \,{y^2}\, + \,\,2x\, + \,2\,k\,y\,\, + \,6\,\, = \,\,0,\,\,{x^2}\, + \,\,{y^2}\, + \,2ky\, + \,k\, = \,0$$ intersect orthogonally, then k is
A
2 or $$- {3 \over 2}$$
B
- 2 or $$- {3 \over 2}$$
C
2 or $${3 \over 2}$$
D
- 2 or $${3 \over 2}$$
4
IIT-JEE 1999
+2
-0.5
If two distinct chords, drawn from the point (p, q) on the circle $${x^2}\, + \,{y^2} = \,px\, + \,qy\,\,(\,where\,pq\, \ne \,0)$$ are bisected by the x - axis, then
A
$${p^2}\, = \,\,{q^2}$$
B
$$\,{p^2}\, = \,\,8\,{q^2}$$
C
$${p^2}\, < \,\,8\,{q^2}$$
D
$${p^2}\, > \,\,8\,{q^2}$$.
Physics
Mechanics
Electricity
Optics
Modern Physics
Chemistry
Physical Chemistry
Inorganic Chemistry
Organic Chemistry
Mathematics
Algebra
Trigonometry
Coordinate Geometry
Calculus
EXAM MAP
Joint Entrance Examination