1
IIT-JEE 2008 Paper 1 Offline
MCQ (Single Correct Answer)
+3
-1
A circle C of radius 1 is inscribed in an equilateral triangle PQR. The points of contact of C with the sides PQ, QR, RP are D, E, F, respectively. The line PQ is given by the equation $$\sqrt 3 x\, + \,y\, - \,6 = 0$$ and the point D is $$\left( {{{3\,\sqrt 3 } \over 2},\,{3 \over 2}} \right)$$. Further, it is given that the origin and the centre of C are on the same side of the line PQ.

The equation of circle C is

A
$${\left( {x\, - 2\sqrt 3 \,} \right)^2} + {(y - 1)^2} = 1$$
B
$${\left( {x\, - 2\sqrt 3 \,} \right)^2} + {(y + {1 \over 2})^2} = 1$$
C
$${\left( {x\, - \sqrt 3 \,} \right)^2} + {(y + 1)^2} = 1$$
D
$${\left( {x\, - \sqrt 3 \,} \right)^2} + {(y - 1)^2} = 1$$
2
IIT-JEE 2008 Paper 1 Offline
MCQ (Single Correct Answer)
+3
-1
A circle C of radius 1 is inscribed in an equilateral triangle PQR. The points of contact of C with the sides PQ, QR, RP are D, E, F, respectively. The line PQ is given by the equation $$\sqrt 3 x\, + \,y\, - \,6 = 0$$ and the point D is $$\left( {{{3\,\sqrt 3 } \over 2},\,{3 \over 2}} \right)$$. Further, it is given that the origin and the centre of C are on the same side of the line PQ.

Points E and F are given by

A
$$\left( {{{\,\sqrt 3 } \over 2},\,{3 \over 2}} \right),\,\left( {\sqrt 3 ,\,0} \right)$$
B
$$\left( {{{\,\sqrt 3 } \over 2},\,{1 \over 2}} \right),\,\left( {\sqrt 3 ,\,0} \right)$$
C
$$\left( {{{\,\sqrt 3 } \over 2},\,{3 \over 2}} \right),\,\left( {{{\,\sqrt 3 } \over 2},\,{1 \over 2}} \right)$$
D
$$\left( {{{\,3} \over 2},\,{{\sqrt 3 } \over 2}} \right),\,\left( {{{\,\sqrt 3 } \over 2},\,{1 \over 2}} \right)$$
3
IIT-JEE 2008 Paper 1 Offline
MCQ (Single Correct Answer)
+3
-1
A circle C of radius 1 is inscribed in an equilateral triangle PQR. The points of contact of C with the sides PQ, QR, RP are D, E, F, respectively. The line PQ is given by the equation $$\sqrt 3 x\, + \,y\, - \,6 = 0$$ and the point D is $$\left( {{{3\,\sqrt 3 } \over 2},\,{3 \over 2}} \right)$$. Further, it is given that the origin and the centre of C are on the same side of the line PQ.

Equations of the sides QR, RP are

A
$$y = {2 \over {\sqrt 3 }}\,x + \,1,\,\,y = \, - {2 \over {\sqrt 3 }}\,x - 1$$
B
$$y = {1 \over {\sqrt 3 }}\,x,\,\,y = \,0$$
C
$$y = {{\sqrt 3 } \over 2}\,x + \,1,\,\,y = \, - {{\sqrt 3 } \over 2}\,x - 1$$
D
$$y = \sqrt 3 \,x,\,\,y = \,0$$
4
IIT-JEE 2006
MCQ (Single Correct Answer)
+5
-1.25
ABCD is a square of side length 2 units. $$C_1$$ is the circle touching all the sides of the square ABCD and $$C_2$$ is the circumcircle of square ABCD. L is a fixed line in the same plane and R is a fixed point.

If a circle is such that it touches the line L and the circle $$C_1$$ externally, such that both the circles are on the same side of the line, then the locus of centre of the circle is

A
ellipse
B
hyper bola
C
parabola
D
pair of straight line
JEE Advanced Subjects
EXAM MAP
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
CBSE
Class 12