NEW
New Website Launch
Experience the best way to solve previous year questions with mock tests (very detailed analysis), bookmark your favourite questions, practice etc...
1

IIT-JEE 1989

MCQ (Single Correct Answer)
If the two circles $${(x - 1)^2} + {(y - 3)^2} = {r^2}$$ and $${x^2} + {y^2} - 8x + 2y + 8 = 0$$ intersect in two distinct points, then
A
2 < r < 8
B
r < 2
C
r = 2
D
r > 2
2

IIT-JEE 1988

MCQ (Single Correct Answer)
If a circle passes through the point (a, b) and cuts the circle $${x^2}\, + \,{y^2}\, = \,{k^2}$$ orthogonally, then the equation of the locus of its centre is
A
$$2\,ax\, + \,2\,by\, - \,({a^2}\, + \,{b^2}\, + \,\,{k^2})\, = \,0$$
B
$$2\,ax\, + \,2\,by\, - \,({a^2}\, - \,\,{b^2}\, + \,\,{k^2})\, = \,0$$
C
$${x^2}\, + \,{y^2}\, - \,3\,\,ax\, + \,4\,by\, + \,\,({a^2}\, + \,\,{b^2}\, - \,\,{k^2})\, = \,0$$
D
$${x^2}\, + \,{y^2}\, - \,2\,\,ax\, - \,4\,by\, + \,\,({a^2}\, - \,\,{b^2}\, - \,\,{k^2})\, = \,0$$.
3

IIT-JEE 1984

MCQ (Single Correct Answer)
The locus of the mid-point of a chord of the circle $${x^2} + {y^2} = 4$$ which subtends a right angle at the origin is
A
x + y = 2
B
$${x^2} + {y^2} = 1$$
C
$${x^2} + {y^2} = 2$$
D
$$x + y $$=1
4

IIT-JEE 1983

MCQ (Single Correct Answer)
The equation of the circle passing through (1, 1) and the points of intersection of $${x^2} + {y^2} + 13x - 3y = 0$$ and $$2{x^2} + 2{y^2} + 4x - 7y - 25 = 0$$ is
A
$$4{x^2} + 4{y^2} - 30x - 10y - 25 = 0$$
B
$$4{x^2} + 4{y^2} + 30x - 13y - 25 = 0$$
C
$$4{x^2} + 4{y^2} - 17x - 10y + 25 = 0$$
D
none of these

Joint Entrance Examination

JEE Main JEE Advanced WB JEE

Graduate Aptitude Test in Engineering

GATE CSE GATE ECE GATE EE GATE ME GATE CE GATE PI GATE IN

Medical

NEET

CBSE

Class 12