1
IIT-JEE 1999
+2
-0.5
If two distinct chords, drawn from the point (p, q) on the circle $${x^2}\, + \,{y^2} = \,px\, + \,qy\,\,(\,where\,pq\, \ne \,0)$$ are bisected by the x - axis, then
A
$${p^2}\, = \,\,{q^2}$$
B
$$\,{p^2}\, = \,\,8\,{q^2}$$
C
$${p^2}\, < \,\,8\,{q^2}$$
D
$${p^2}\, > \,\,8\,{q^2}$$.
2
IIT-JEE 1996
+1
-0.25
The angle between a pair of tangents drawn from a point P to the circle $${x^2}\, + \,{y^2}\, + \,\,4x\, - \,6\,y\, + \,9\,{\sin ^2}\,\alpha \, + \,13\,{\cos ^2}\,\alpha \, = \,0$$ is $$2\,\alpha$$.
The equation of the locus of the point P is
A
$${x^2}\, + \,{y^2}\, + \,\,4x\, - \,6\,y\, + \,4\, = \,0$$
B
$${x^2}\, + \,{y^2}\, + \,\,4x\, - \,6\,y\,\, - \,9\,\, = \,0$$
C
$${x^2}\, + \,{y^2}\, + \,\,4x\, - \,6\,y\,\, - \,4\,\, = \,0$$
D
$${x^2}\, + \,{y^2}\, + \,\,4x\, - \,6\,y\,\, + \,9\,\, = \,0$$
3
IIT-JEE 1994
+1
-0.25
The circles $${x^2} + {y^2} - 10x + 16 = 0$$ and $${x^2} + {y^2} = {r^2}$$ intersect each other in two distinct points if
A
r < 2
B
r > 8
C
2 < r < 8
D
$$2 \le r \le 8$$
4
IIT-JEE 1993
+1
-0.25
The locus of the centre of a circle, which touches externally the circle $${x^2} + {y^2} - 6x - 6y + 14 = 0$$ and also touches the y-axis, is given by the equation:
A
$${x^2} - 6x - 10y + 14 = 0$$
B
$${x^2} - 10x - 6y + 14 = 0$$
C
$${y^2} - 6x - 10y + 14 = 0$$
D
$${y^2} - 10x - 6y + 14 = 0$$
EXAM MAP
Medical
NEET